BackgroundSaturated fatty acids can be detrimental to human health and have received considerable attention in recent years. Several studies using taurine breeds showed the existence of genetic variability and thus the possibility of genetic improvement of the fatty acid profile in beef. This study identified the regions of the genome associated with saturated, mono- and polyunsaturated fatty acids, and n-6 to n-3 ratios in the Longissimus thoracis of Nellore finished in feedlot, using the single-step method.ResultsThe results showed that 115 windows explain more than 1 % of the additive genetic variance for the 22 studied fatty acids. Thirty-one genomic regions that explain more than 1 % of the additive genetic variance were observed for total saturated fatty acids, C12:0, C14:0, C16:0 and C18:0. Nineteen genomic regions, distributed in sixteen different chromosomes accounted for more than 1 % of the additive genetic variance for the monounsaturated fatty acids, such as the sum of monounsaturated fatty acids, C14:1 cis-9, C18:1 trans-11, C18:1 cis-9, and C18:1 trans-9. Forty genomic regions explained more than 1 % of the additive variance for the polyunsaturated fatty acids group, which are related to the total polyunsaturated fatty acids, C20:4 n-6, C18:2 cis-9 cis12 n-6, C18:3 n-3, C18:3 n-6, C22:6 n-3 and C20:3 n-6 cis-8 cis-11 cis-14. Twenty-one genomic regions accounted for more than 1 % of the genetic variance for the group of omega-3, omega-6 and the n-6:n-3 ratio.ConclusionsThe identification of such regions and the respective candidate genes, such as ELOVL5, ESSRG, PCYT1A and genes of the ABC group (ABC5, ABC6 and ABC10), should contribute to form a genetic basis of the fatty acid profile of Nellore (Bos indicus) beef, contributing to better selection of the traits associated with improving human health.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2511-y) contains supplementary material, which is available to authorized users.
BackgroundFatty acid type in beef can be detrimental to human health and has received considerable attention in recent years. The aim of this study was to identify differentially expressed genes in longissimus thoracis muscle of 48 Nellore young bulls with extreme phenotypes for fatty acid composition of intramuscular fat by RNA-seq technique.ResultsDifferential expression analyses between animals with extreme phenotype for fatty acid composition showed a total of 13 differentially expressed genes for myristic (C14:0), 35 for palmitic (C16:0), 187 for stearic (C18:0), 371 for oleic (C18:1, cis-9), 24 for conjugated linoleic (C18:2 cis-9, trans11, CLA), 89 for linoleic (C18:2 cis-9,12 n6), and 110 genes for α-linolenic (C18:3 n3) fatty acids. For the respective sums of the individual fatty acids, 51 differentially expressed genes for saturated fatty acids (SFA), 336 for monounsaturated (MUFA), 131 for polyunsaturated (PUFA), 92 for PUFA/SFA ratio, 55 for ω3, 627 for ω6, and 22 for ω6/ω3 ratio were identified. Functional annotation analyses identified several genes associated with fatty acid metabolism, such as those involved in intra and extra-cellular transport of fatty acid synthesis precursors in intramuscular fat of longissimus thoracis muscle. Some of them must be highlighted, such as: ACSM3 and ACSS1 genes, which work as a precursor in fatty acid synthesis; DGAT2 gene that acts in the deposition of saturated fat in the adipose tissue; GPP and LPL genes that support the synthesis of insulin, stimulating both the glucose synthesis and the amino acids entry into the cells; and the BDH1 gene, which is responsible for the synthesis and degradation of ketone bodies used in the synthesis of ATP.ConclusionSeveral genes related to lipid metabolism and fatty acid composition were identified. These findings must contribute to the elucidation of the genetic basis to improve Nellore meat quality traits, with emphasis on human health. Additionally, it can also contribute to improve the knowledge of fatty acid biosynthesis and the selection of animals with better nutritional quality.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3232-y) contains supplementary material, which is available to authorized users.
RESUMO -Este trabalho foi realizado para se avaliar o desempenho animal, as características da carcaça e a maciez da carne de 36 novilhos mestiços, apresentando, ao início do experimento, média de 14 meses de idade e aproximadamente 320 kg de peso vivo. Os animais foram confinados e receberam dietas com alto teor de concentrado: uma controle (CO), sem adição de lipídios; outra contendo 5% de sais de cálcio de ácidos graxos (AG); e outra com 21% de caroço de algodão (CA). A ingestão de matéria seca no tratamento AG foi menor que no CA, mas não diferiu da ingestão do CO. O ganho médio diário e a eficiência alimentar não apresentaram diferenças significativas entre os tratamentos. Os valores encontrados para a análise de uréia sangüínea foram significativamente maiores no tratamento CA em relação ao AG. O rendimento de carcaça, a área de olho de lombo, a espessura de gordura, as gorduras renal e pélvica, o peso do fígado, o pH e a temperatura não foram significativamente diferentes. Não houve diferença também para o índice de perda de água por cozimento e maciez, verificada pela força de cisalhamento nos diferentes tempos de maturação. Os sais de cálcio de ácidos graxos a 5% e o caroço de algodão a 21% podem ser empregados nas rações para confinamento, sem causarem alterações no desempenho animal ou nas características de carcaça.Palavras-chave: características de carcaça, caroço de algodão, confinamento, espessura de gordura, rendimento de carcaça, sais de cálcio de ácidos graxos Performance and Carcass Characteristics of Steers Fed Different Fat SourcesABSTRACT -The objective of this trial was to evaluate the animal performance, carcass characteristics and meat tenderness of 36 crossbred steers averaging 14 months old and 320 kg body weight. The animals were fed high concentrate-based diets: control -without additional fat (CO); diet with 5% calcium salt of fatty acids (AG); and diet with 21% whole cottonseed (CA). Dry matter intake of AG treatment was lower (P=0,05) than CA, that differ from CO diet. No significant differences of treatments on daily weight gain and feed efficiency were observed. Blood urea nitrogen was greater (P=0,01) for CA treatment than AG treatment. Carcass dressing, rib eye area, fat thickness, kidney and pelvic fat, liver weight, pH and temperature did not show significant difference. No difference on water loss during cooking and tenderness measured by shear force at different aging times was detected. Diets with 5% calcium salt of fatty acids or 21% whole cottonseed can be used for feedlot with no change on animal performance or carcass characteristics.
BackgroundThe aim of this study was to assess genome-wide autozygosity in a Nellore cattle population and to characterize ROH patterns and autozygosity islands that may have occurred due to selection within its lineages. It attempts also to compare estimates of inbreeding calculated from ROH (FROH), genomic relationship matrix (FGRM), and pedigree-based coefficient (FPED).ResultsThe average number of ROH per animal was 55.15 ± 13.01 with an average size of 3.24 Mb. The Nellore genome is composed mostly by a high number of shorter segments accounting for 78% of all ROH, although the proportion of the genome covered by them was relatively small. The genome autozygosity proportion indicates moderate to high inbreeding levels for classical standards, with an average value of 7.15% (178.70 Mb). The average of FPED and FROH, and their correlations (− 0.05 to 0.26) were low. Estimates of correlation between FGRM-FPED was zero, while the correlation (− 0.01 to − 0.07) between FGRM-FROH decreased as a function of ROH length, except for FROH > 8Mb (− 0.03). Overall, inbreeding coefficients were not high for the genotyped animals. Autozygosity islands were evident across the genome (n = 62) and their genomic location did not largely differ within lineages. Enriched terms (p < 0.01) associated with defense response to bacteria (GO:0042742), immune complex reaction (GO:0045647), pregnancy-associated glycoproteins genes (GO:0030163), and organism growth (GO:0040014) were described within the autozygotic islands.ConclusionsLow FPED-FROH correlation estimates indicate that FPED is not the most suitable method for capturing ancient inbreeding when the pedigree does not extend back many generations and FROH should be used instead. Enriched terms (p < 0.01) suggest a strong selection for immune response. Non-overlapping islands within the lineages greatly explain the mechanism underlying selection for functionally important traits in Nellore cattle.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-5060-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.