Climate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species' abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.
Bats are a biodiverse mammal order providing key ecosystem services such as pest suppression, pollination, and seed dispersal. Bats are also very sensitive to human actions, and significant declines in many bat populations have been recorded consequently. Many bat species find crucial roosting and foraging opportunities in European forests. Such forests have historically been exploited by humans and are still influenced by harvesting. One of the consequences of this pressure is the loss of key habitat resources, often making forests inhospitable to bats. Despite the legal protection granted to bats across Europe, the impacts of forestry on bats are still often neglected. Because forest exploitation influences forest structure at several spatial scales, economically viable forestry could become more sustainable and even favor bats. We highlight that a positive future for bat conservation that simultaneously benefits forestry is foreseeable, although more applied research is needed to develop sound management. Key future research topics include the detection of factors influencing the carrying capacity of forests, and determining the impacts of forest management and the economic importance of bats in forests. Predictive tools to inform forest managers are much needed, together with greater synergies between forest managers and bat conservationists.
a b s t r a c tMonitoring data on hibernating bats were aggregated for the first time across a number of European countries. These supranational trends revealed that nine out of 16 bat species examined increased at their hibernation sites in Europe between 1993 and 2011, while only one is decreasing. This is reflected in the positive trend shown by a prototype multispecies bat indicator which combined the individual species trends. Our findings suggest that after a period of strong decline in the 20th century, populations of most of the investigated bat species are stabilising or recovering, although with profound differences between European bio-geographical regions and countries. Bat populations in the Continental region have a less positive tendency, compared to those in the Atlantic region. More data from more countries may reveal whether these differences are systematical. So far, the prototype indicator covers 9 countries and 16 of the 45 bat species found in Europe. The next steps will be to refine the methodology behind the indicator and to improve the indicator's representation of European bat populations and its capacity to compare trends among biogeographic regions. This should be achieved by participation of more countries and incorporating data from additional bat species, including data collected by other surveillance methods, such as summer roost counts. Robust information on trends in bat populations at a range of geographic scales is essential to the long-term conservation of bats. Further development of this indicator will make an important contribution to conservation of bats because it will stimulate international cooperation and capacity building for monitoring and research, thus exchanging and broadening knowledge of the status of bats and improving the identification of threats.
Emerging fungal diseases have become challenges for wildlife health and conservation. North American hibernating bat species are threatened by the psychrophilic fungus Pseudogymnoascus destructans (Pd) causing the disease called white-nose syndrome (WNS) with unprecedented mortality rates. The fungus is widespread in North America and Europe, however, disease is not manifested in European bats. Differences in epidemiology and pathology indicate an evolution of resistance or tolerance mechanisms towards Pd in European bats. We compared the proteomic profile of blood plasma in healthy and Pd-colonized European Myotis myotis and North American Myotis lucifugus in order to identify pathophysiological changes associated with Pd colonization, which might also explain the differences in bat survival. Expression analyses of plasma proteins revealed differences in healthy and Pd-colonized M. lucifugus, but not in M. myotis. We identified differentially expressed proteins for acute phase response, constitutive and adaptive immunity, oxidative stress defence, metabolism and structural proteins of exosomes and desmosomes, suggesting a systemic response against Pd in North American M. lucifugus but not European M. myotis. The differences in plasma proteomic profiles between European and North American bat species colonized by Pd suggest European bats have evolved tolerance mechanisms towards Pd infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.