Development of high yielding and stable cultivars of various legume crops across different environments is very important for their adoption by farmers. In addition, climate change sets new challenges to major crop species and especially to grain legumes such as faba bean (Vicia faba L.) for adaptation to stressful environments. The present study focused on evaluating faba bean genotypes developed for yield and stability across different environments. The study was conducted in three areas of Greece (South, Central, and North) for two consecutive growing seasons (2018–2019 and 2019–2020). Biomass yield, seed yield, and yield components were studied together with plant height, earliness, and water use efficiency. Genotype, environment, and their interaction affected most of the studied characteristics. The environment was the major source of variation for most of the characteristics, as it explained 81–93% of total variation, and only in the thousand seed weight the variation was 49% for the environment and 40% for the genotype. Genotype had a much smaller effect on the remaining characteristics (1.2–3.9%), and the interaction between environment x genotype accounted for up to 0.5–17% of the variation. GGE-biplot analysis for high yield and stability across different environments revealed three genotypic types: genotypes well adapted either for biomass or seed yield and genotypes with high adaptation capacity for both traits under typical Mediterranean conditions. These results indicated that screening faba bean genotypes under different environmental field conditions is essential to identify adaptable cultivars to be cultivated for biomass and/or seed yield or to be used in breeding programs.
Nitrogen (N) management remains a global challenge for the sustainability of diversified farming systems. Field crops are often over-supplied with nitrogen by farmers aiming to high productivity. Although the increase of nitrogen rates leads in many instances to high yields, degree of effectiveness for nitrogen use remains low. Urease and nitrification inhibitors are technologies which have been present in the fertilizers market at least 50 years. Inhibitors exploitation ensures long-term nitrogen release and improved N-uptake by plants and N-storage in seeds and silage. Avail of inhibitors, such as the decline of nitrogen leaching in form of NO3−, reduction of emissions in NH3 form, and rise of yield, are some of the desirable attributes that are derived from their integration in fertilization schedules. This review reports the evaluation of applied nitrogen, with inhibitors, and field crops based on nitrogen indices. The examined N-indicators include Nitrogen use efficiency (NUE), Nitrogen Utilization Efficiency (NUtE,) Nitrogen Agronomic Efficiency (NAE), Nitrogen Harvest Index (NHI), and N uptake. This review gathered all, to the best of our knowledge, available data regarding the utilization of nitrification and urease inhibitors under an exclusively agronomic perspective. Either dual or single use of nitrification and urease inhibitors has been reported to significantly increase yield components and promote nitrogen uptake. To conclude, the assessment of N-related indices is vital to promoting sustainability in diversified farming systems, while the integration of inhibitors in national N fertilizations schemes may contribute to system profitability through enhancement of N-supply to crops.
Trichoderma harzianum, as a natural endophytic biocontrol agent, can ameliorate plant development, nutrient uptake, and resistance to biotic and abiotic stresses. This study aimed to investigate the effect of Trichoderma harzianum inoculation on agronomical and quality characteristics of two monoecious hemp (Cannabis sativa L.) varieties, Fedora 17 and Felina. A greenhouse pot experiment was conducted in a completely randomized design of two treatments of Trichoderma harzianum with a low and high dose of the fungus (T1 and T2). The significance of differences between treatments was estimated by using a Fisher’s test with a significance level p = 0.05. The root density of both varieties was significantly affected by treatments, and higher values were recorded in Fedora 17 (2.32 mm cm−3). The Arbuscular Mycorrhizal Fungi (AMF) colonization of the root system and the soil emission of CO2 were higher after the inoculation of Trichoderma harzianum. The highest values of plant height and dry weight were noticed for T2, especially in variety Felina. Trichoderma harzianum positively influenced characteristics of inflorescences such as their number, fresh weight moisture, and compactness in both varieties, while the dry weight, length, and dry yield of inflorescences were not improved. Finally, the fertigation of Trichoderma harzianum in hemp plants was beneficial by increasing the cannabidiol (CBD) content, especially in T2 treatment (4 × 1012 CFU kg−1).
Climate change affects the sustainability of farming systems by downgrading soil fertility and diminishing crop yields. Agenda 2030 for Sustainable Development Goals aims to achieve key performance indicators to convert effectually currently degraded agroecosystems into smart, climate-resilient, and profitable farming systems. The introduction of alternative crops could equilibrate the negative impact of increased temperatures and water scarcity to ensure sufficient farm profitability. Alternative crops such as quinoa, teff, tritordeum, camelina, nigella, chia, and sweet potato show a high acclimatization potential to various conditions and could be components of novel re-designed agroecosystems, satisfying the goals the EU Green Deal for reduced chemical input use by 2030. In certain occasions, they adapt even better than conventional or traditional crops and could be integrated in crop rotations, demonstrating multiple uses that would benefit farmers. This review aimed to (i) evaluate seven alternative crops based on their potential contribution to climate change mitigation, in compliance with the EU (European Union) Green Deal objectives and the SDGs (Sustainable Development Goals) of the UN (United Nations), and (ii) examine the factors that would determine their successful integration in the Mediterranean Basin. These limiting factors for crop establishment included (i) soil properties (soil texture, pH value, salinity, and sodicity), (ii) environmental parameters (temperature, altitude, latitude, photoperiod), and (iii) crop performance and dynamics regarding water demands, fertilization needs, light, and heat requirements. All proposed crops were found to be adaptable to the Mediterranean climate characteristics and promising for the implementation of the goals of EU and UN.
Rhizophagus irregularis is an arbuscular mycorrhiza fungus that can enhance plant nutrition and reduce transplant shock on seedlings. The present study aims to evaluate the effects of this fungus on the quality of cannabis (Cannabis sativa L.) seedlings. A greenhouse float system experiment was conducted in a completely randomized design with three treatments. The treatments included the application of 40, 80 and 120 fungus spores per L of nutrient solution (AMF1, AMF2 and AMF3, respectively). The evaluation was performed based on the agronomic characteristics of the seedlings (root and stem length and weight, stem diameter), N and P content, survival rate, and the Dickson’s quality index (DQI). Results indicated that root length and stem dry weight were significantly increased (by 34.14% and 21.4%, respectively) in the AMF3 treatment. The biomass of the seedlings’ roots, the fresh weight and the N content were not affected by the AMF. On the contrary, survival rate, P content and DQI were significantly increased in AMF3 (by 5%, 24.3% and 12.4% respectively). Overall, our findings suggest that the application of high doses of Rhizophagus irregularis (AMF3) on float system-produced cannabis seedlings results in a considerable increment of their quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.