To understand how the gut microbiome is impacted by human adaptation to varying environments, we explored gut bacterial communities in the BaAka rainforest hunter-gatherers and their agriculturalist Bantu neighbors in the Central African Republic. Although the microbiome of both groups is compositionally similar, hunter-gatherers harbor increased abundance of Prevotellaceae, Treponema, and Clostridiaceae, while the Bantu gut microbiome is dominated by Firmicutes. Comparisons with US Americans reveal microbiome differences between Africans and westerners but show western-like features in the Bantu, including an increased abundance of predictive carbohydrate and xenobiotic metabolic pathways. In contrast, the hunter-gatherer gut shows increased abundance of predicted virulence, amino acid, and vitamin metabolism functions, as well as dominance of lipid and amino-acid-derived metabolites, as determined through metabolomics. Our results demonstrate gradients of traditional subsistence patterns in two neighboring African groups and highlight the adaptability of the microbiome in response to host ecology.
The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro-ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga-Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.
We quantify the impacts of poaching, Ebola, and habitat degradation on western lowland gorillas and central chimpanzees.
Numerous protected areas (PAs) have been created in Africa to safeguard wildlife and other natural resources. However, significant threats from anthropogenic activities and decline of wildlife populations persist, while conservation efforts in most PAs are still minimal. We assessed the impact level of the most common threats to wildlife within PAs in tropical Africa and the relationship of conservation activities with threat impact level. We collated data on 98 PAs with tropical forest cover from 15 countries across West, Central and East Africa. For this, we assembled information about local threats as well as conservation activities from published and unpublished literature, and questionnaires sent to long-term field workers. We constructed general linear models to test the significance of specific conservation activities in relation to the threat impact level. Subsistence and commercial hunting were identified as the most common direct threats to wildlife and found to be most prevalent in West and Central Africa. Agriculture and logging represented the most common indirect threats, and were most prevalent in West Africa. We found that the long-term presence of conservation activities (such as law enforcement, research and tourism) was associated with lower threat impact levels. Our results highlight deficiencies in the management effectiveness of several PAs across tropical Africa, and conclude that PA management should invest more into conservation activities with long-term duration.
Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet-microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet-microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.