Insulin receptor substrate (IRS) proteins play a central role in maintaining basic cellular functions such as growth and metabolism. They act as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as the insulin receptor, and a complex network of intracellular signalling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified which differ in their subcellular distribution and interaction with SH2 domain proteins. In addition, differential IRS tissue- and developmental-specific expression patterns may contribute to specificity in their signaling potential.
Randomized clinical trials have demonstrated that the increased intake of -3 polyunsaturated fatty acids significantly reduces the risk of ischemic cardiovascular disease, but no investigations have been performed in hereditary cardiomyopathies with diffusely damaged myocardium. In the present study, ␦-sarcoglycan-null cardiomyopathic hamsters were fed from weaning to death with an ␣-linolenic acid (ALA)-enriched versus standard diet. Results demonstrated a great accumulation of ALA and eicosapentaenoic acid and an increased eicosapentaenoic/arachidonic acid ratio in cardiomyopathic hamster hearts, correlating with the preservation of myocardial structure and function. In fact, ALA administration preserved plasmalemma and mitochondrial membrane integrity, thus maintaining proper cell/extracellular matrix contacts and signaling, as well as a normal gene expression profile (myosin heavy chain isoforms, atrial natriuretic peptide, transforming growth factor-1) and a limited extension of fibrotic areas within ALA-fed cardiomyopathic hearts. Consequently, hemodynamic indexes were safeguarded, and more than 60% of ALA-fed animals were still alive (mean survival time, 293 ؎ 141.8 days) when all those fed with standard diet were deceased (mean survival time, 175.9 ؎ 56 days). Therefore, the clinically evident beneficial effects of -3 polyunsaturated fatty acids are mainly related to preservation of myocardium structure and function and the attenuation of myocardial fibrosis. (Am J Pathol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.