A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that indirect land use will be responsible for substantially more carbon loss (up to twice as much) than direct land use; however, because of predicted increases in fertilizer use, nitrous oxide emissions will be more important than carbon losses themselves in terms of warming potential. A global greenhouse gas emissions policy that protects forests and encourages best practices for nitrogen fertilizer use can dramatically reduce emissions associated with biofuels production.
Changes in agricultural land use have important implications for environmental services. Previous studies of agricultural land-use futures have been published indicating large uncertainty due to different model assumptions and methodologies. In this article we present a first comprehensive comparison of global agro-economic models that have harmonized drivers of population, GDP, and biophysical yields. The comparison allows us to ask two research questions: (1) How much cropland will be used under different socioeconomic and climate change scenarios? (2) How can differences in model results be explained? The comparison includes four partial and six general equilibrium models that differ in how they model land supply and amount of potentially available land. We analyze results of two different socioeconomic scenarios and three climate scenarios (one with constant climate). Most models (7 out of 10) project an increase of cropland of 10-25% by 2050 compared to 2005 (under constant climate), but one model projects a decrease. Pasture land expands in some models, which increase the treat on natural vegetation further. Across all models most of the cropland expansion takes place in South America and sub-Saharan Africa. In general, the strongest differences in model results are related to differences in the costs of land expansion, the endogenous productivity responses, and the assumptions about potential cropland. JEL classifications: C61, C68, Q11, Q54
Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can play in a global mitigation strategy to stabilize Earth's average temperature within 2 °C of the preindustrial level and their impacts on agriculture. We show that an ambitious global Energy-Only climate policy that includes biofuels would likely not achieve the 2 °C target. A thought-experiment where the world ideally prices land carbon fluxes combined with biofuels (Energy+Land policy) gets the world much closer. Land could become a large net carbon sink of about 178 Pg C over the 21st century with price incentives in the Energy+Land scenario. With land carbon pricing but without biofuels (a No-Biofuel scenario) the carbon sink is nearly identical to the case with biofuels, but emissions from energy are somewhat higher, thereby results in more warming. Absent such incentives, land is either a much smaller net carbon sink (+37 Pg C - Energy-Only policy) or a net source (-21 Pg C - No-Policy). The significant trade-off with this integrated land-use approach is that prices for agricultural products rise substantially because of mitigation costs borne by the sector and higher land prices. Share of income spent on food for wealthier regions continues to fall, but for the poorest regions, higher food prices lead to a rising share of income spent on food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.