The SARS-CoV-2 lineages B.1.1.7 and 501.V2, which were first detected in the United Kingdom and South Africa, respectively, are spreading rapidly in the human population. Thus, there is an increased need for genomic and epidemiological surveillance in order to detect the strains and estimate their abundances. Here, we report a genomic analysis of SARS-CoV-2 in 48 raw wastewater samples collected from three wastewater treatment plants in Switzerland between July 9 and December 21, 2020. We find evidence for the presence of several mutations that define the B.1.1.7 and 501.V2 lineages in some of the samples, including co-occurrences of up to three B.1.1.7 signature mutations on the same amplicon in four samples from Lausanne and one sample from a Swiss ski resort dated December 9 - 21. These findings suggest that the B.1.1.7 strain could be detected by mid December, two weeks before its first verification in a patient sample from Switzerland. We conclude that sequencing SARS-CoV-2 in community wastewater samples may help detect and monitor the circulation of diverse lineages.
The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK.
The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. Here we show that the dynamics of SARS-CoV-2 RNA in wastewater can be used to estimate Re in near real-time, independent of clinical data and without associated biases stemming from clinical testing and reporting strategies. The method to estimate Re from wastewater is robust and applicable to data from different countries and wastewater matrices. The resulting estimates are as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens.
Background Throughout the COVID-19 pandemic, SARS-CoV-2 genetic variants of concern (VOCs) have repeatedly and independently arisen. VOCs are characterised by increased transmissibility, increased virulence or reduced neutralisation by antibodies obtained from prior infection or vaccination. Tracking the introduction and transmission of VOCs relies on sequencing, typically whole genome sequencing of clinical samples. Wastewater surveillance is increasingly used to track the introduction and spread of SARS-CoV-2 variants through sequencing approaches. Aim Here, we adapt and apply a rapid, high-throughput method for detection and quantification of the relative frequency of two deletions characteristic of the Alpha, Beta, and Gamma VOCs in wastewater. Methods We developed drop-off RT-dPCR assays and an associated statistical approach implemented in the R package WWdPCR to analyse temporal dynamics of SARS-CoV-2 signature mutations (spike Δ69–70 and ORF1a Δ3675–3677) in wastewater and quantify transmission fitness advantage of the Alpha VOC. Results Based on analysis of Zurich wastewater samples, the estimated transmission fitness advantage of SARS-CoV-2 Alpha based on the spike Δ69–70 was 0.34 (95% confidence interval (CI): 0.30–0.39) and based on ORF1a Δ3675–3677 was 0.53 (95% CI: 0.49–0.57), aligning with the transmission fitness advantage of Alpha estimated by clinical sample sequencing in the surrounding canton of 0.49 (95% CI: 0.38–0.61). Conclusion Digital PCR assays targeting signature mutations in wastewater offer near real-time monitoring of SARS-CoV-2 VOCs and potentially earlier detection and inference on transmission fitness advantage than clinical sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.