Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxychavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthasemediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. (Cancer Sci 2012; 103: 88-99) I matinib (also known as STI571 or Gleevec), a small-molecule inhibitor of the Bcr-Abl kinase, has been used successfully to treat chronic myeloid leukemia,(1) but resistance has emerged against this drug. The T315I mutation is the most predominant among the mutations found in imatinib-resistant patients.(2) None of the available approved drugs have been effective in circumventing this T315I mutation. Recent reports suggest that the alcoholic extract of Piper betle (Piper betel L.) leaves induces apoptosis of imatinib-resistant cells (4) and shows activity against T315I tumor xenografts.The deep green heart-shaped leaves commonly referred to as ''betel leaves'' are traditionally consumed as a mouth freshener in Eastern Asia.(6) Hydroxychavicol (HCH), a phenolic compound of Piper betle leaves has been shown to have antimutagenic and anti-carcinogenic activity. (7,8) HCH possesses antimicrobial, antioxidant and anti-inflammatory properties.Recent studies also suggest apoptosis of oral (KB) carcinoma cells by HCH through induction of reactive oxygen species (ROS). None of the previous studies suggest any mechanisms downstream of ROS for HCH-induced apoptosis. (9) Reactive oxygen species are products of aerobic metabolism of cells. Tumor cells have higher levels of intracellular ROS than their normal counterparts.(10) This creates opposite effects upon augmentation of intracellular ROS on cell proliferation in normal cells versus cancer cells.(10) As the basal level of intracellular ROS is low in normal cells, its increase, to a certain extent, is associated with cell proliferati...
BackgroundHydroxychavicol (HCH), a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS). The aim of the study is to optimize the oxidative stress –induced chronic myeloid leukemic (CML) cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO) with HCH and studying the underlying mechanism.Materials and MethodsAnti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4), non-leukemic (A549, MIA-PaCa2, PC-3, HepG2) cancer cell lines and normal cell lines (NIH3T3, Vero) was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM) after staining with annexinV-FITC/propidium iodide (PI), detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP)-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF) by confocal microscopy. Intracellular reduced glutathione (GSH) was measured by colorimetric assay using GSH assay kit. 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) and 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) were used as probes to measure intracellular increase in ROS and nitric oxide (NO) levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action.ResultsNon-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF)-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the expression of inducible nitric oxide synthase (iNOS). iNOS- mediated production of NO was identified as an effector molecule causing apoptosis of CML cells.Conclusion/SignificanceBSO synergizes with HCH in inducing apoptosis of CML cells through the GSH-ROS-JNK-ERK-iNOS pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.