Purpose
This paper aims to extract colour from micro-organisms (as a source of natural pigments) using agro-industrial substrates to replace synthetic media by solid state fermentation. Nature is filled with colours. Due to health and environmental consciousness among people, use of synthetic colour has declined, and so the need to develop colour from cheap and easily available natural sources (plants, animals, micro-organisms and algae) using a cost-effective technique with higher yield and rapid growth. Monascus purpureus colour is a potent source of compounds (Dimerumic acid, Monacolin-k and -aminobutyric acid) having antimutagenic, antimicrobial and antiobesity, which helps in combating diseases.
Design/methodology/approach
Response surface methodology was used to optimise the biopigments extraction from Monascus purpureus using solid state fermentation.
Findings
The best optimised conditions for biopigments production using Monascus purpureus MTCC 369 were pH 5.4 at 32°C for 8 days 9 hours (8.9 days) from sweet potato peel and pea pod powder, 7.8 (w/w) and 3.9 per cent (w/w), respectively, which gave a final yield of 21 CVU/g. The model F-value of 69.18 and high value of adjusted determination coefficient 96.00 per cent implies high level of significance of the fitted model.
Practical implications
Extracted colour can be used in beverages, confectionery and pharmaceutical industries.
Social implications
Colour produced using Monascus purpureus MTCC 369 is a natural source. As consumers are reluctant to use synthetic colour because of the undesirable allergic reactions caused by them, so a biopigment produced is natural colouring compound with wide application in food sector.
Originality/value
Selected sources of carbon and nitrogen were not used earlier by any researcher to extract biopigment from Monascus purpureus MTCC 369.
Purpose
Biopigments, natural colors from microbiological origin are of great interest because of their potential advantages over synthetic colorants. Therefore, this paper aims to evaluate the best possible fermentative conditions for the maximum production of biopigment using solid state fermentation and submerged fermentation by Monascus purpureus MTCC 369.
Design/methodology/approach
The biopigment was produced using solid state fermentation and submerged with optimized substrate to achieve higher yield. The statistical analysis was carried out using a Microsoft Excel ® (Microsoft Corporation).
Findings
On comparative analysis, it was observed that solid state fermentation resulted significant accumulation of biopigment (9.0 CVU/g) on the 9th day in comparison to submerged fermentation (5.1 CVU/g) on the 15th day.
Practical implications
Results revealed that sweet potato peel powder and pea pods provides necessary nutrients required for mycelial growth, and biopigment production, therefore, can be used as potent substrate for biopigment production by Monascus purpureus MTCC 369. Extracted color can be used in confectionery, beverages and pharmaceutical industries.
Originality/value
This work focuses on utilisation of waste for production of pigment as alternative source to synthetic colorant, and few studies have been carried out using wastes, but no work has been carried out on sweet potato peel to the best of the authors’ knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.