High-level expression of the cytokine receptor-like factor 2 gene, CRLF2, in precursor B-cell acute lymphoblastic leukemia (pB-ALL) was shown to be caused by a translocation involving the IGH@ locus or a deletion juxtaposing CRLF2 with the P2RY8 promoter. To assess its possible prognostic value, CRLF2 expression was analyzed in 555 childhood pB-ALL patients treated according to the Acute Lymphoblastic Leukemia Berlin-Frankfurt-Münster 2000 (ALL-BFM 2000) protocol. Besides CRLF2 rearrangements, high-level CRLF2 expression was seen in cases with supernumerary copies of the CRLF2 locus. On the basis of the detection of CRLF2 rearrangements, a CRLF2 high-expression group (n = 49) was defined. This group had a 6-year relapse incidence of 31% plus or minus 8% compared with 11% plus or minus 1% in the CRLF2 low-expression group (P = .006). This difference was mainly attributable to an extremely high incidence of relapse (71% ± 19%) in non–high-risk patients with P2RY8-CRLF2 rearrangement. The assessment of CRLF2 aberrations may therefore serve as new stratification tool in Berlin-Frankfurt-Münster–based protocols by identifying additional high-risk patients who may benefit from an intensified and/or targeted treatment.
SummaryAcute leukaemias of ambiguous lineage (ALAL) represent a rare type of leukaemia, expressing both myeloid and lymphoid markers. This study retrospectively analyzed data from 92 children (biphenotypic n = 78, bilineal n = 6, lineage switch n = 8) with ALAL registered in the Berlin-Frankfürt-Münster (BFM) acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL) studies between 1998 and 2006 (2AE4% of all cases with acute leukaemia). Our cohort of ALAL patients was characterized by comparatively high median age (8AE9 years), high median white blood cell count (14AE9 · 10 9 /l), as well as frequent hyperleucocytosis (18AE5%) and central nervous system involvement (24AE1%). The most frequent cytogenetic abnormalities were ETV6/RUNX1 fusion (16%) and trisomy 8 (14AE6%). Complete remission rate was significantly lower than in ALL-BFM patients (91AE8% vs. 99AE1%, P < 0AE001), but comparable to AML-BFM patients (87AE9%). Event-free survival (EFS) and overall survival (OS) of ALAL patients were low, at 62 ± 5%. 5-year probability of EFS was significantly worse than in ALL patients (80 ± 1%, P < 0AE001), but better than for AML patients (49 ± 2%, P = 0AE027). Our data suggest that an intensive therapy regimen including stem cell transplantation may be favourable for bilineal or lineage switch cases, whereas patients with ETV6/RUNX1 fusion, lymphoid morphology and patients with expression of cyCD22 and cyCD79a should be treated with an ALL-directed therapy.
Asparaginases are important agents used in the treatment of children with acute lymphoblastic leukemia (ALL). Three types of asparaginase are currently available: two are derived from Escherichia coli [native asparaginase and pegylated asparaginase (PEG-asparaginase)] and one from Erwinia chrysanthemi (crisantaspase). All three products share the same mechanism of action but have different pharmacokinetic properties, which do not make them easily interchangeable. Among the known toxicities and side-effects, allergic reactions and silent inactivation represent the most important limitations to the prolonged use of any asparaginase product, with associated reduced therapeutic effects and poorer outcomes. Routine real time monitoring can help to identify patients with silent inactivation and facilitate a switch to a different product to ensure continued depletion of asparagine, completion of the treatment schedule and maintenance of outcomes. However, the most appropriate second-line treatment is still a matter of debate. PEG-asparaginase has lower immunogenicity and a longer half-life than native Escherichia coli (E. coli) asparaginase, which makes it useful for both first-line and second-line use with a reduced number of doses. However, PEG-asparaginase displays cross-reactivity with native E. coli asparaginase that may harm its therapeutic effects. Crisantaspase does not display cross-reactivity to either of the E. coli-derived products, which has made crisantaspase the second-line treatment option in a number of recent protocols. As crisantaspase has a much shorter biological half-life than the E. coli-derived products, the appropriate dosage and administration schedule are of paramount importance in delivering treatment with this product. In the ongoing trial AIEOP-BFM ALL 2009 (Associazione Italiana Ematologia Oncologia Pediatrica - Berlin-Franklin-Munster), in which PEG-asparaginase is used first-line, one dose of PEG-asparaginase is substituted by seven doses of crisantaspase given intravenously at 20,000 IU/m2 on alternate days when clinical allergy or silent inactivation is present. Based on the indications of different protocols, lack of cross-reactivity to the E. coli-derived products and taking into consideration regulatory factors and availability, crisantaspase may be considered a viable second-line therapy.
CRT does not have an impact on the risk of relapse in children with ALL treated on contemporary protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.