We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4 T cells and CD8 T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression. We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. .
Summary Pancreatic ductal adenocarcinoma (PDA) is characterized by immune-tolerance and immunotherapeutic resistance. We discovered upregulation of receptor-interacting serine/threonine-protein kinase 1 (RIP1) in tumor-associated macrophages (TAMs) in PDA. To study its role in oncogenic progression, we developed a selective small molecule RIP1 inhibitor with high in vivo exposure. Targeting RIP1 reprogrammed TAMs toward an MHCIIhiTNFα+IFNγ+ immunogenic phenotype in a STAT1-dependent manner. RIP1 inhibition in TAMs resulted in cytotoxic T cell activation and T-helper cell differentiation towards a mixed Th1/Th17 phenotype, leading to tumor-immunity in mice and in organotypic models of human PDA. Targeting RIP1 synergized with PD1- and ICOS-based immunotherapies. Tumor-promoting effects of RIP1 were independent of its co-association with RIP3. Collectively, our work describes RIP1 as a checkpoint kinase governing tumor-immunity.
Tankyrase (TNKS) is a poly-ADP-ribosylating protein (PARP) whose activity suppresses cellular axin protein levels and elevates β-catenin concentrations, resulting in increased oncogene expression. The inhibition of tankyrase (TNKS1 and 2) may reduce the levels of β-catenin-mediated transcription and inhibit tumorigenesis. Compound 1 is a previously described moderately potent tankyrase inhibitor that suffers from poor pharmacokinetic properties. Herein, we describe the utilization of structure-based design and molecular modeling toward novel, potent, and selective tankyrase inhibitors with improved pharmacokinetic properties (39, 40).
Purpose: While immune checkpoint inhibitors such as anti–PD-L1 are rapidly becoming the standard of care in the treatment of many cancers, only a subset of treated patients have long-term responses. IL12 promotes antitumor immunity in mouse models; however, systemic recombinant IL12 had significant toxicity and limited efficacy in early clinical trials. Experimental Design: We therefore designed a novel intratumoral IL12 mRNA therapy to promote local IL12 tumor production while mitigating systemic effects. Results: A single intratumoral dose of mouse (m)IL12 mRNA induced IFNγ and CD8+ T-cell–dependent tumor regression in multiple syngeneic mouse models, and animals with a complete response demonstrated immunity to rechallenge. Antitumor activity of mIL12 mRNA did not require NK and NKT cells. mIL12 mRNA antitumor activity correlated with TH1 tumor microenvironment (TME) transformation. In a PD-L1 blockade monotherapy-resistant model, antitumor immunity induced by mIL12 mRNA was enhanced by anti–PD-L1. mIL12 mRNA also drove regression of uninjected distal lesions, and anti–PD-L1 potentiated this response. Importantly, intratumoral delivery of mRNA encoding membrane-tethered mIL12 also drove rejection of uninjected lesions with very limited circulating IL12p70, supporting the hypothesis that local IL12 could induce a systemic antitumor immune response against distal lesions. Furthermore, in ex vivo patient tumor slice cultures, human IL12 mRNA (MEDI1191) induced dose-dependent IL12 production, downstream IFNγ expression and TH1 gene expression. Conclusions: These data demonstrate the potential for intratumorally delivered IL12 mRNA to promote TH1 TME transformation and robust antitumor immunity. See related commentary by Cirella et al., p. 6080
The drivers and the specification of CD4 + T cell differentiation in the tumor microenvironment and their contributions to tumor immunity or tolerance are incompletely understood. Using models of pancreatic ductal adenocarcinoma (PDA), we show that a distinct subset of tumor-infiltrating dendritic cells (DC) promotes PDA growth by directing a unique T H -program. Specifically, CD11b + CD103 − DC predominate in PDA, express high IL-23 and TGF-β, and induce FoxP3 neg tumor-promoting IL-10 + IL-17 + IFNγ + regulatory CD4 + T cells. The balance between this distinctive T H program and canonical FoxP3 + T REGS is unaffected by pattern recognition receptor ligation and is modulated by DC expression of retinoic acid. This T H -signature is mimicked in human PDA where it is associated with immune-tolerance and diminished patient survival. Our data suggest that CD11b + CD103 − DC promote CD4 + T cell tolerance in PDA which may underscore its resistance to immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.