IntroductionWhile current standard of care (SOC) for idiopathic pulmonary fibrosis (IPF) slows disease progression, prognosis remains poor. Therefore, an unmet need exists for novel, well-tolerated agents that reduce lung function decline and improve quality of life. Here we report the design of two phase III studies of the novel IPF therapy, GLPG1690.Methods and analysisTwo identically designed, phase III, international, randomised, double-blind, placebo-controlled, parallel-group, multicentre studies (ISABELA 1 and 2) were initiated in November 2018. It is planned that, in each study, 750 subjects with IPF will be randomised 1:1:1 to receive oral GLPG1690 600 mg, GLPG1690 200 mg or placebo, once daily, on top of local SOC, for at least 52 weeks. The primary endpoint is rate of decline of forced vital capacity (FVC) over 52 weeks. Key secondary endpoints are week 52 composite endpoint of disease progression or all-cause mortality (defined as composite endpoint of first occurrence of ≥10% absolute decline in per cent predicted FVC or all-cause mortality at week 52); time to first respiratory-related hospitalisation until end of study; and week 52 change from baseline in the St George’s Respiratory Questionnaire total score (a quality-of-life measure).Ethics and disseminationStudies will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles, and local ethical and legal requirements. Results will be reported in a peer-reviewed publication.Trial registration numbersNCT03711162; NCT03733444.
Background and Objectives GLPG1690 is an autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis. Several publications suggested a role of autotaxin in the control of disease-affected lung function and of lysophosphatidic acid in lung remodeling processes. The aim of the current article was to describe the exposure–response relationship of GLPG1690 and further develop a rational basis to support dose selection for clinical trials in patients with idiopathic pulmonary fibrosis. Methods Two trials were conducted in healthy volunteers: in the first trial, GLPG1690 was administered as single doses from 20 mg up to 1500 mg, and subsequently in multiple daily doses of 300–1000 mg. In a second trial, the interaction of rifampin with 600 mg of GLPG1690 was evaluated. A third trial was conducted in patients with idiopathic pulmonary fibrosis administered 600 mg of GLPG1690 once daily for 12 weeks. The exposure–response (lysophosphatidic acid C18:2 reduction) relationship of GLPG1690 was first described using non-linear mixed-effects modeling and the model was subsequently deployed to simulate a lysophosphatidic acid C18:2 reduction as a biomarker of autotaxin inhibition in the dose range from 50 to 1000 mg once or twice daily. Results The population pharmacokinetics and lysophosphatidic acid C18:2 response of GLPG1690 were adequately described by a combined population pharmacokinetic and pharmacokinetic/pharmacodynamic model. Dose, formulation, rifampin co-administration, health status (healthy volunteer vs. patient with idiopathic pulmonary fibrosis), and baseline lysophosphatidic acid C18:2 were identified as covariates in the model. The effect of dose on systemic clearance indicated that GLPG1690 followed a more than dose-proportional increase in exposure over the simulated dose range of 50–1000 mg once daily. Model-based simulations showed reductions in lysophosphatidic acid C18:2 of at least 80% with doses greater or equal to 200 mg once daily. Conclusion Based on these results, 200 and 600 mg once-daily doses were selected for future clinical trials in patients with idiopathic pulmonary fibrosis. Electronic supplementary material The online version of this article (10.1007/s40262-019-00755-3) contains supplementary material, which is available to authorized users.
ImportanceThere is a major need for effective, well-tolerated treatments for idiopathic pulmonary fibrosis (IPF).ObjectiveTo assess the efficacy and safety of the autotaxin inhibitor ziritaxestat in patients with IPF.Design, Setting, and ParticipantsThe 2 identically designed, phase 3, randomized clinical trials, ISABELA 1 and ISABELA 2, were conducted in Africa, Asia-Pacific region, Europe, Latin America, the Middle East, and North America (26 countries). A total of 1306 patients with IPF were randomized (525 patients at 106 sites in ISABELA 1 and 781 patients at 121 sites in ISABELA 2). Enrollment began in November 2018 in both trials and follow-up was completed early due to study termination on April 12, 2021, for ISABELA 1 and on March 30, 2021, for ISABELA 2.InterventionsPatients were randomized 1:1:1 to receive 600 mg of oral ziritaxestat, 200 mg of ziritaxestat, or placebo once daily in addition to local standard of care (pirfenidone, nintedanib, or neither) for at least 52 weeks.Main Outcomes and MeasuresThe primary outcome was the annual rate of decline for forced vital capacity (FVC) at week 52. The key secondary outcomes were disease progression, time to first respiratory-related hospitalization, and change from baseline in St George’s Respiratory Questionnaire total score (range, 0 to 100; higher scores indicate poorer health-related quality of life).ResultsAt the time of study termination, 525 patients were randomized in ISABELA 1 and 781 patients in ISABELA 2 (mean age: 70.0 [SD, 7.2] years in ISABELA 1 and 69.8 [SD, 7.1] years in ISABELA 2; male: 82.4% and 81.2%, respectively). The trials were terminated early after an independent data and safety monitoring committee concluded that the benefit to risk profile of ziritaxestat no longer supported their continuation. Ziritaxestat did not improve the annual rate of FVC decline vs placebo in either study. In ISABELA 1, the least-squares mean annual rate of FVC decline was –124.6 mL (95% CI, −178.0 to −71.2 mL) with 600 mg of ziritaxestat vs –147.3 mL (95% CI, −199.8 to −94.7 mL) with placebo (between-group difference, 22.7 mL [95% CI, −52.3 to 97.6 mL]), and –173.9 mL (95% CI, −225.7 to −122.2 mL) with 200 mg of ziritaxestat (between-group difference vs placebo, −26.7 mL [95% CI, −100.5 to 47.1 mL]). In ISABELA 2, the least-squares mean annual rate of FVC decline was –173.8 mL (95% CI, −209.2 to −138.4 mL) with 600 mg of ziritaxestat vs –176.6 mL (95% CI, −211.4 to −141.8 mL) with placebo (between-group difference, 2.8 mL [95% CI, −46.9 to 52.4 mL]) and –174.9 mL (95% CI, −209.5 to −140.2 mL) with 200 mg of ziritaxestat (between-group difference vs placebo, 1.7 mL [95% CI, −47.4 to 50.8 mL]). There was no benefit with ziritaxestat vs placebo for the key secondary outcomes. In ISABELA 1, all-cause mortality was 8.0% with 600 mg of ziritaxestat, 4.6% with 200 mg of ziritaxestat, and 6.3% with placebo; in ISABELA 2, it was 9.3% with 600 mg of ziritaxestat, 8.5% with 200 mg of ziritaxestat, and 4.7% with placebo.Conclusions and RelevanceZiritaxestat did not improve clinical outcomes compared with placebo in patients with IPF receiving standard of care treatment with pirfenidone or nintedanib or in those not receiving standard of care treatment.Trial RegistrationClinicalTrials.gov Identifiers: NCT03711162 and NCT03733444
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.