MicroRNAs (miRNAs) are endogenous noncoding RNAs, which negatively regulate gene expression. To determine genomewide miRNA DNA copy number abnormalities in cancer, 283 known human miRNA genes were analyzed by high-resolution arraybased comparative genomic hybridization in 227 human ovarian cancer, breast cancer, and melanoma specimens. A high proportion of genomic loci containing miRNA genes exhibited DNA copy number alterations in ovarian cancer (37.1%), breast cancer (72.8%), and melanoma (85.9%), where copy number alterations observed in >15% tumors were considered significant for each miRNA gene. We identified 41 miRNA genes with gene copy number changes that were shared among the three cancer types (26 with gains and 15 with losses) as well as miRNA genes with copy number changes that were unique to each tumor type. Importantly, we show that miRNA copy changes correlate with miRNA expression. Finally, we identified high frequency copy number abnormalities of Dicer1, Argonaute2, and other miRNAassociated genes in breast and ovarian cancer as well as melanoma. These findings support the notion that copy number alterations of miRNAs and their regulatory genes are highly prevalent in cancer and may account partly for the frequent miRNA gene deregulation reported in several tumor types.genome ͉ noncoding RNA ͉ comparative genomic hybridization
Tumor growth results in hypoxia. Understanding the mechanisms of gene expression reprogramming under hypoxia may provide important clues to cancer pathogenesis. We studied miRNA genes that are regulated by hypoxia in ovarian cancer cell lines by TaqMan miRNA assay containing 157 mature miRNAs. MiR-210 was the most prominent miRNA consistently stimulated under hypoxic conditions. We provide evidence for the involvement of the HIF signaling pathway in miR-210 regulation. Biocomputational analysis and in vitro assays demonstrated that e2f transcription factor 3 (e2f3), a key protein in cell cycle, is regulated by miR-210. E2F3 was further confirmed to be downregulated at the protein level upon induction of miR-210. Importantly, we found remarkably high frequency of miR-210 gene copy deletions in ovarian cancer patients (64%, n = 114) and that gene copy number correlates with miR-210 expression levels. Taken together, our results indicate that miR-210 plays a crucial role in tumor onset as a key regulator of the hypoxia response and provide evidence for a link between hypoxia and the regulation of cell cycle.
The protein kinase C (PKC) family plays a key regulatory role in a wide range of cellular functions as well as in various cancerassociated signal transduction pathways. Here, we investigated the genomic alteration and gene expression of most known PKC family members in human ovarian cancer. The DNA copy number of PKC family genes was screened by a high-resolution array-based comparative genomic hybridization in 89 human ovarian cancer specimens. Five PKC genes exhibited significant DNA copy number gains, including PKCi (43.8%), PKCb1 (37.1%), PKCg (27.6%), PKCz (22.5%), and PKCq (21.3%). None of the PKC genes exhibited copy number loss. The mRNA expression level of PKC genes was analyzed by microarray retrieval approach. Two of the amplified PKC genes, PKCi and PKCu, were significantly up-regulated in ovarian cancer compared with normal ovary. Increased PKCI expression correlated with tumor stage or grade, and PKCI overexpression was seen mostly in ovarian carcinoma but not in other solid tumors. The above results were further validated by real-time reverse transcription-PCR with 54 ovarian cancer specimens and 24 cell lines; overexpression of PKCI protein was also confirmed by tissue array and Western blot. Interestingly, overexpressed PKCI did not affect ovarian cancer cell proliferation or apoptosis in vitro. However, decreased PKCI expression significantly reduced anchorage-independent growth of ovarian cancer cells, whereas overexpression of PKCI contributed to murine ovarian surface epithelium transformation in cooperation with mutant Ras. We propose that PKCI may serve as an oncogene and a biomarker of aggressive disease in human ovarian cancer. (Cancer Res 2006; 66(9): 4627-35)
Purpose: The phosphatidylinositol 3 ¶-kinase (PI3K) family plays a key regulatory role in various cancer-associated signal transduction pathways. Here, we investigated the genomic alterations and gene expression of most known PI3K family members in human epithelial ovarian cancer. Experimental Design: The DNA copy number of PI3K family genes was screened by a highresolution array comparative genomic hybridization in 89 human ovarian cancer specimens. The mRNA expression level of PI3K genes was analyzed by microarray retrieval approach, and further validated by real-time reverse transcription-PCR. The expression of p55g protein in ovarian cancer was analyzed on tissue arrays. Small interfering RNA was used to study the function of PIK3R3 in ovarian cancer. Results: Inovarian cancer, 6 of12 PI3Kgenes exhibited significant DNA copy number gains (>20%), including PIK3CA (23.6%), PIK3CB (27.0%), PIK3CG (25.8 %), PIK3R2 (29.2%), PIK3R3 (21.3%), and PIK3C2B (40.4%). Among those, only PIK3R3 had significantly up-regulated mRNA expression level in ovarian cancer compared with normal ovary. Up-regulated PIK3R3 mRNA expression was also observed in liver, prostate, and breast cancers. The PIK3R3 mRNA expression level was significantly higher in ovarian cancer cell lines (n = 18) than in human ovarian surface epithelial cells (n = 6, P = 0.002). Overexpression of p55g protein in ovarian cancer was confirmed by tissue array analysis. In addition, we found that knockdown of PIK3R3 expression by small interfering RNA significantly increased the apoptosis in cultured ovarian cancer cell lines. Conclusion: We propose that PIK3R3 may serve as a potential therapeutic target in human ovarian cancer.
Lysosomal enzymes function optimally at low pH; as accumulation of waste material contributes to cell aging and disease, dysregulation of lysosomal pH may represent an early step in several pathologies. Here, we demonstrate that stimulation of the P2X7 receptor (P2X7R) for ATP alkalinizes lysosomes in cultured human retinal pigmented epithelial (RPE) cells and impairs lysosomal function. P2X7R stimulation did not kill RPE cells but alkalinized lysosomes by 0.3 U. Receptor stimulation also elevated cytoplasmic Ca(2+); Ca(2+) influx was necessary but not sufficient for lysosomal alkalinization. P2X7R stimulation decreased access to the active site of cathepsin D. Interestingly, lysosomal alkalinization was accompanied by a rise in lipid oxidation that was prevented by P2X7R antagonism. Likewise, the autofluorescence of phagocytosed photoreceptor outer segments increased by lysosomal alkalinization was restored 73% by a P2X7R antagonist. Together, this suggests that endogenous autostimulation of the P2X7R may oxidize lipids and impede clearance. The P2X7R was expressed on apical and basolateral membranes of mouse RPE; mRNA expression of P2X7R and extracellular ATP marker NTPDase1 was raised in RPE tissue from the ABCA4(-/-) mouse model of Stargardt's retinal degeneration. In summary, P2X7R stimulation raises lysosomal pH and impedes lysosomal function, suggesting a possible role for overstimulation in diseases of accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.