Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to Nasu-Hakola disease, Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and FTD-like syndrome without bone involvement. TREM2 is an innate immune receptor preferentially expressed by microglia and is involved in inflammation and phagocytosis. Whether and how TREM2 missense mutations affect TREM2 function is unclear. We report that missense mutations associated with FTD and FTD-like syndrome reduce TREM2 maturation, abolish shedding by ADAM proteases, and impair the phagocytic activity of TREM2-expressing cells. As a consequence of reduced shedding, TREM2 is virtually absent in the cerebrospinal fluid (CSF) and plasma of a patient with FTD-like syndrome. A decrease in soluble TREM2 was also observed in the CSF of patients with AD and FTD, further suggesting that reduced TREM2 function may contribute to increased risk for two neurodegenerative disorders.
TREM2 is an innate immune receptor expressed on the surface of microglia. Loss‐of‐function mutations of TREM2 are associated with increased risk of Alzheimer's disease (AD). TREM2 is a type‐1 protein with an ectodomain that is proteolytically cleaved and released into the extracellular space as a soluble variant (sTREM2), which can be measured in the cerebrospinal fluid (CSF). In this cross‐sectional multicenter study, we investigated whether CSF levels of sTREM2 are changed during the clinical course of AD, and in cognitively normal individuals with suspected non‐AD pathology (SNAP). CSF sTREM2 levels were higher in mild cognitive impairment due to AD than in all other AD groups and controls. SNAP individuals also had significantly increased CSF sTREM2 compared to controls. Moreover, increased CSF sTREM2 levels were associated with higher CSF total tau and phospho‐tau181P, which are markers of neuronal degeneration and tau pathology. Our data demonstrate that CSF sTREM2 levels are increased in the early symptomatic phase of AD, probably reflecting a corresponding change of the microglia activation status in response to neuronal degeneration.
Background: Frontotemporal dementia (FTD) is frequently caused by genetic mutations in GRN, C9orf72 and MAPT. Neurofilament light chain (NfL) is a promising blood biomarker in genetic FTD, with elevated levels in symptomatic mutation carriers. A better understanding of NfL dynamics is essential for its use in upcoming therapeutic trials. We investigated longitudinal serum NfL trajectories in presymptomatic and symptomatic genetic FTD. over time was associated with atrophy rate in several grey matter regions, but not with rate of change in clinical parameters. Interpretation: This study confirms the value of blood NfL as a disease progression biomarker in genetic FTD and indicates that longitudinal NfL measurements could help identify mutation carriers approaching symptom onset and capture the rate of brain atrophy. The stable levels in C9orf72-and MAPT-associated FTD offer potential for NfL as a marker of treatment effect in therapeutic trials.
Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.