ObjectiveAmyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease leading to muscular paralysis and death within 3–5 years from onset. Currently, there are no reliable and sensitive markers able to substantially shorten the diagnosis delay. The objective of the study was to analyze a large number of proteins in plasma from patients with various clinical phenotypes of ALS in search for novel proteins or protein profiles that could serve as potential indicators of disease.MethodsAffinity proteomics in the form of antibody suspension bead arrays were applied to profile plasma samples from 367 ALS patients and 101 controls. The plasma protein content was directly labeled and protein profiles obtained using 352 antibodies from the Human Protein Atlas targeting 278 proteins. A focused bead array was then built to further profile eight selected protein targets in all available samples.ResultsDisease-associated significant differences were observed and replicated for profiles from antibodies targeting the proteins: neurofilament medium polypeptide (NEFM), solute carrier family 25 (SLC25A20), and regulator of G-protein signaling 18 (RGS18).InterpretationUpon further validation in several independent cohorts with inclusion of a broad range of other neurological disorders as controls, the alterations of these three protein profiles in plasma could potentially provide new molecular markers of disease that contribute to the quest of understanding ALS pathology.
Dynactin is a complex motor protein involved in the retrograde axonal transport disturbances of which may lead to amyotrophic lateral sclerosis (ALS). Mice with hSOD1G93A mutation develop ALS-like symptoms and are used as a model for the disease studies. Similar symptoms demonstrate Cra1 mice, with Dync1h1 mutation. Dynactin heavy (DCTN1) and light (DCTN3) subunits were studied in the CNS of humans with sporadic ALS (SALS), mice with hSOD1G93A (SOD1/+), Dync1h1 (Cra1/+), and double (Cra1/SOD1) mutation at presymptomatic and symptomatic stages. In SALS subjects, in contrast to control cases, expression of DCTN1-mRNA but not DCTN3-mRNA in the motor cortex was higher than in the sensory cortex. However, the mean levels of DCTN1-mRNA and protein were lower in both SALS cortexes and in the spinal cord than in control structures. DCTN3 was unchanged in brain cortexes but decreased in the spinal cord on both mRNA and protein levels. In all SALS tissues immunohistochemical analyses revealed degeneration and loss of neuronal cells, and poor expression of dynactin subunits. In SOD1/+ mice both subunits expression was significantly lower in the frontal cortex, spinal cord and hippocampus than in wild-type controls, especially at presymptomatic stage. Fewer changes occurred in Cra1/SOD1 and Cra1/+ mice.It can be concluded that in sporadic and SOD1-related ALS the impairment of axonal retrograde transport may be due to dynactin subunits deficiency and subsequent disturbances of the whole dynein/dynactin complex structure and function. The Dync1h1 mutation itself has slight negative effect on dynactin expression and it alleviates the changes caused by SOD1G93A mutation.
Background: Amyotrophic lateral sclerosis is a fatal motor neuron degenerative disease. Most cases are sporadic (SALS), and approximately 10% are familial (FALS) among which over 20% are linked to the SOD1 mutation. Both SALS and FALS have been associated with retrograde axonal transport defects. Kinesins (KIFs) are motor proteins involved mainly in anterograde transport; however, some also participate in retrograde transport. Objective: The purpose of the study was to investigate and compare the expression of kinesins involved in anterograde (KIF5A, 5C) and retrograde (KIFC3/C2) axonal transport in SALS in humans and FALS in mice with the hSOD1G93A mutation. Methods: The studies were conducted on various parts of the CNS from autopsy specimens of SALS patients, and transgenic mice at presymptomatic and symptomatic stages using real-time quantitative PCR and reverse-transcription PCR. Results: All KIF expression in the motor cortex of individual SALS subjects was higher than in the adjacent sensory cortex, in contrast to the expression in control brains. It was also significantly higher in the frontal cortex of symptomatic but not presymptomatic mice compared to wild-type controls. However, the mean KIF expression in the SALS motor and sensory cortexes was lower than in control cortexes. To a lesser extent the decrease in KIF mean expression also occurred in human but not in mouse ALS spinal cords and in both human and mouse cerebella. Conclusion: Disturbances in kinesin expression in the CNS may dysregulate both anterograde and retrograde axonal transports leading to motor neuron degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.