Mineral metabolism was studied in 99 premenopausal and 80 postmenopausal women both before and after 9-14 months of treatment with 50 micrograms/day transdermal estradiol. In estrogen-repleted subjects (premenopausal women and postmenopausal women on estrogen replacement therapy) total serum calcium was significantly lower (0.065 mmol/l; p less than 0.001) than in those who were estrogen-depleted (untreated postmenopausal women). This difference was smaller but still significant for calculated ultrafiltrable calcium (UFCa: 0.02-0.03 mmol/l; p less than 0.001). However, ionized calcium (both calculated and measured) was not different in the two groups of women. This finding explains why estrogen repletion does not induce changes in the serum level of intact parathyroid hormone (PTH), despite lower total or ultrafiltrable serum calcium. In a parallel study we have shown that intravenous administration of aminobutane bisphosphonate, a powerful inhibitor of bone resorption, produces similar decreases in serum calcium which were associated with significant increases in intact PTH. Estrogen-depleted women had, on the one hand, significantly higher serum levels of bicarbonate, anion gap, complexed calcium, pH, phosphate and alkaline phosphatase, and higher rates of tubular reabsorption of phosphate and urinary excretion of calcium and hydroxyproline. On the other hand they had lower serum chloride levels and lower rates of tubular reabsorption of calcium. Altogether these findings might indicate that estrogen deficiency decreases renal sensitivity to PTH. This is responsible for the higher serum phosphate and bicarbonate levels, the resulting mild metabolic alkalosis leading to higher serum levels of complexed ultrafiltrable calcium and higher rates of urinary excretion of calcium, but unchanged serum levels of ionized calcium and PTH.
Abstract-Increased free radical production and hyperinsulinemia are thought to play a role in experimental and human atherosclerosis, but the relation between the 2 abnormalities has not been studied. In 23 healthy volunteers, we measured the susceptibility of circulating low-density lipoprotein (LDL) cholesterol particles to in vitro copper sulfate oxidation (measured as the lag phase) and cell-mediated oxidative modification (measured as malondialdehyde generation in LDL during incubation with human umbilical vein endothelial cells), as well as the vitamin E content of LDL cholesterol at baseline and after 2 hours of physiological hyperinsulinemia (euglycemic insulin clamp). The lag time of LDL oxidation decreased from control values of 108Ϯ3 and 107Ϯ3 minutes (at baseline and after 2 hours of saline infusion) to 101Ϯ3 minutes after 2 hours of clamping (PϽ0.0001). At corresponding times, cell-mediated malondialdehyde generation in LDL rose from 4.96Ϯ0.11 and 4.98Ϯ0.10 to 5.28Ϯ0.10 nmol/L (Pϭ0.0006), whereas the LDL vitamin E content decreased from 6.78Ϯ0.06 and 6.77Ϯ0.06 to 6.64Ϯ0.06 g/mg (PϽ0.04). The insulin-induced shortening of the lag phase was directly related to the decrement of vitamin E in LDL; furthermore, in subjects with higher baseline serum triglyceride levels, insulin induced a greater shortening of the lag phase than in subjects with low baseline triglycerides. We conclude that in healthy humans acute physiological hyperinsulinemia enhances the oxidative susceptibility of LDL cholesterol particles. This effect may have pathogenic significance for atherogenesis in insulin resistant states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.