In this study, we have shown the applicability of chloramphenicol acetyltransferase as a new and convenient selectable marker for stable nuclear transformation as well as potential chloroplast transformation of Cyanidioschyzon merolae-a new model organism, which offers unique opportunities for studding the mitochondrial and plastid physiology as well as various evolutionary, structural, and functional features of the photosynthetic apparatus.
Equine herpesvirus-1 (EHV-1) infections cause significant economic losses for equine industries worldwide as a result of abortion, respiratory illness, and neurologic disease in all breeds of horses. The occurrence of abortions caused by EHV-1 has repeatedly been confirmed in Poland, but neurological manifestations of the infection have not been described yet. Also it is unknown how the infection of neurons with non-neuropathogenic strains is regulated. To further understand the virus-neuron interaction we studied two strains of EHV-1 in murine primary neuron cell cultures. Both strains were isolated from aborted fetuses: Rac-H, a reference strain isolated by Woyciechowska in 1959 (Woyciechowska 1960) and Jan-E isolated by Bańbura et al. (Bańbura et al. 2000). Upon infection of primary murine neuronal cell cultures with Jan-E or Rac-H strains, a cytopathic effect was observed, manifested by a changed morphology and disintegration of the cell monolayer. Positive results of immunofluorescence, nPCR and real-time PCR tests indicated high virus concentration in neurons, meaning that both EHV-1 strains were likely to replicate in mouse neurons in vitro without the need for adaptation. Moreover, we demonstrated that some neurons may survive (limited) virus replication during primary infection, and these neurons (eight weeks p.i.) harbour EHV-1 and were still able to transmit infection to other cells.
Mitochondrial movement and distribution throughout the cytoplasm is crucial for maintaining cell homeostasis. Mitochondria are dynamic organelles but can be functionally disrupted during infection. Here, we show that the ubiquitous human pathogens HHV-1 and HHV-2 induce changes in the mitochondrial morphology and distribution in the early and late phases of productive infection in human keratinocytes (HaCaT cells). We observed a decrease in the mitochondrial potential at 2 h postinfection and a decrease in cell vitality at 24 h postinfection. Moreover, we found that mitochondria migrated to the perinuclear area, where HHV-1 and HHV-2 antigens were also observed, mainly in the early stages of infection. Positive results of real-time PCR showed a high level of HHV-1 and HHV-2 DNA in HaCaT cells and culture medium. Our data demonstrate that HHV-1 and HHV-2 cause mitochondrial dysfunction in human keratinocytes.
Key messageWe have successfully transformed an exthemophilic red alga with the chloramphenicol acetyltransferase gene, rendering this organism insensitive to its toxicity. Our work paves the way to further work with this new modelorganism.AbstractHere we report the first successful attempt to achieve a stable, under selectable pressure, chloroplast transformation in Cyanidioschizon merolae—an extremophilic red alga of increasing importance as a new model organism. The following protocol takes advantage of a double homologous recombination phenomenon in the chloroplast, allowing to introduce an exogenous, selectable gene. For that purpose, we decided to use chloramphenicol acetyltransferase (CAT), as chloroplasts are particularly vulnerable to chloramphenicol lethal effects (Zienkiewicz et al. in Protoplasma, 2015, doi:10.1007/s00709-015-0936-9). We adjusted two methods of DNA delivery: the PEG-mediated delivery and the biolistic bombardment based delivery, either of these methods work sufficiently with noticeable preference to the former. Application of a codon-optimized sequence of the cat gene and a single colony selection yielded C. merolae strains, capable of resisting up to 400 µg/mL of chloramphenicol. Our method opens new possibilities in production of site-directed mutants, recombinant proteins and exogenous protein overexpression in C. merolae—a new model organism.Electronic supplementary materialThe online version of this article (doi:10.1007/s11103-016-0554-8) contains supplementary material, which is available to authorized users.
Equid herpesvirus 1 (EHV-1), like other members of the Alphaherpesvirinae, is a neurotropic virus, that causes latent infections in the nervous system of the natural host. All alphaherpesviruses have developed sophisticated strategies to interfere with the host cell apoptotic mechanisms, but the ability of EHV-1 to induce apoptosis in neurons has not been determined yet. In this study, apoptotic and necrotic changes in cultured murine neurons were methods identifying key stages of apoptosis. Th ese methods have demonstrated characteristic apoptosis features, like DNA fragmentation, chromatin condensation, membrane blebbing and cell shrinkage in the infected cells. It seems likely that apoptosis was the predominant way of cell death in EHV-1-infected murine neurons. However, we showed also that during acute EHV-1 infection the majority of infected neurons remained unchanged and survived for more than eight weeks in culture, suggesting some protective mechanisms induced by the virus. Furthermore, it was shown that infection of neurons with EHV-1 has no signifi cant infl uence on the level of the caspase 3, 7, and 8. We speculate that the control of apoptosis may be the key mechanism regulating the balance between productive and latent infection at the site of virus persistence. Abbreviations: BHV-1 = bovine herpesvirus 1; EHV-1 = equid herpesvirus 1; HSV-1 = herpes simplex virus 1; HHV-1 = human herpesvirus 1; HHV-2 = human herpesvirus 2; Jan-E = EHV-1 fi eld strain; p.i. = post infection; PI = propidium iodide; PRV = pseudorabies virus; Rac-H = EHV-1 reference strain; TUNEL = Terminal deoxynucleotide transferase dUTP nick end labeling; VZV = varicella zoster virus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.