Lacustrine carbonate chimneys are striking, metre-scale constructions. If these were bioinfluenced constructions, they could be priority targets in the search for early and extraterrestrial microbial life. However, there are questions over whether such chimneys are built on a geobiological framework or are solely abiotic geomorphological features produced by mixing of lake and spring waters. Here, we use correlative microscopy to show that microbes were living around Pleistocene Mono Lake carbonate chimneys during their growth. A plausible interpretation, in line with some recent works by others on other lacustrine carbonates, is that benthic cyanobacteria and their associated extracellular organic material (EOM) formed tubular biofilms around rising sublacustrine spring vent waters, binding calcium ions and trapping and binding detrital silicate sediment. Decay of these biofilms would locally have increased calcium and carbonate ion activity, inducing calcite precipitation on and around the biofilms. Early manganese carbonate mineralisation was directly associated with cell walls, potentially related to microbial activity though the precise mechanism remains to be elucidated. Much of the calcite crystal growth was likely abiotic, and no strong evidence for either authigenic silicate growth or a clay mineral precursor framework was observed. Nevertheless, it seems likely that the biofilms provided initial sites for calcite nucleation and encouraged the primary organised crystal growth. We suggest that the nano-, micro- and macroscale fabrics of these Pleistocene Mono Lake chimneys were affected by the presence of centimetre-thick tubular and vertically stacked calcifying microbial mats. Such carbonate chimneys represent a promising macroscale target in the exploration for ancient or extraterrestrial life.
Lacustrine carbonate deposits with spherulitic facies are poorly understood, but are key to understanding the economically important “Pre-Salt” Mesozoic strata of the South Atlantic. A major barrier to research into these unique and spectacular facies is the lack of good lacustrine spherulite-dominated deposits which are known in outcrop. Stratigraphy and petrography suggest one of the best analogue systems is found in the Carboniferous of Scotland: the East Kirkton Limestone. Here we propose a hydrogeochemical model that explains why the CaCO3, SiO2, Mg-Si-Al mineral suite associated with spherular radial calcite facies forms in alkaline lakes above basaltic bedrock. Demonstrating links between igneous bedrock chemistry, lake and spring water chemistry and mineral precipitation, this model has implications for studies of lacustrine sediments in rift basins of all ages. Using empirical and theoretical approaches, we analyze the relationship between metal mobilization from sub-surface volcaniclastic rocks and the potential for precipitation of carbonate minerals, various Mg-bearing minerals and chalcedony in a lacustrine spherulitic carbonate setting. This suite of minerals is most likely formed by in-gassing of CO2 to a carbon-limited alkaline spring water, consistent with the reaction of alkali igneous rocks in the subsurface with meteoric groundwater. We suggest that an analogous system to that at East Kirkton caused development of the ‘Pre-Salt’ spherulitic carbonate deposits
Understanding the flow of carbon through hyperalkaline lakes is a key means of understanding their biogeochemistry, sedimentology, and their paleoenvironmental and paleoclimatic records. Furthermore, understanding how mineral precipitation is regulated in these lakes can provide insights into how their sequestration of carbon can be managed. We report geophysical surveys of Mono Lake, California, USA, which show unanticipated geomorphological control on the recent/contemporary formation of lacustrine carbonate formations (“tufa”). Acquired shallow-penetration seismic data show a fault zone below the lake floor, but despite the regional evidence for geothermal waters rising up these fractures, we find no evidence for tufa precipitation at the surface exposure of this structure, either in the seismic data or in the swath bathymetry. However, we do find sub-lacustrine tufa columns in these data elsewhere, which is the first time these have been reported directly. We find and report on a strong link between column location and meteoric Ca supply to the lake, with the latter sourced either through surface runoff or groundwater. For example, a region close to a creek inlet has more frequent and larger tufa bodies, which grow at a wider depth range than another region far from an inlet but close to the fault. This demonstrates the importance of meteoric water ingress in regulating carbonate mineral formation in these basins, and raises the possibility that management of water within the catchment could be a means to enhance carbon capture in natural and artificial hyperalkaline lakes.
Ancient and recent terrestrial carbonate-precipitating systems are characterised by a heterogeneous array of deposits volumetrically dominated by calcite. In these environments, calcite precipitates display an extraordinary morphological diversity, from single crystal rhombohedral prisms, to blocky crystalline encrustations, or spherulitic to dendritic aggregates. Despite many decades of thorough descriptive and interpretative work on these fabrics, relating calcite micro-morphology with sedimentary hydrogeochemical conditions remains a challenge. Environmental interpretations have been hampered by the fact that calcite morphogenesis results from the complex interaction between different physicochemical parameters which often act simultaneously (e.g., carbonate mineral supersaturation, Mg/Ca ratio of the parental fluid, organic and inorganic additives). To try to experimentally address the sedimentological causes of calcite morphogenesis, an experimental approach yielding a first attempt at a calcite growth-form phase diagram is presented here. The initial aim was to account for the carbonate products experimentally nucleated in alkaline, saline lake settings. These are the result of at least two competing calcite precipitation 'driving forces' that affect morphogenesis: the calcite supersaturation level of the parental fluid, and the concentration of microbial-derived organic molecules (alginic acid). A key finding of this study is that common naturally-occurring calcite products such as calcite floating rafts, rhombohedral prismatic forms, di-pyramid calcite crystals, spherulitic calcite grains, or vertically stacked spheroidal calcite aggregates, can be related to specific hydrogeochemical contexts, and their physical transitions pinpointed in a phase diagram. By exploring binary or ternary responses to forcing in morphological phase-space, links between calcite growth forms and (palaeo)environmental conditions can be determined. This provides a truly 3 process-oriented means of navigating questions around carbonate precipitate morphogenesis for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.