There is an important mortality effect of heat across Europe. The effect is evident from June through August; it is limited to the first week following temperature excess, with evidence of mortality displacement. There is some suggestion of a higher effect of early season exposures. Acclimatization and individual susceptibility need further investigation as possible explanations for the observed heterogeneity among cities.
We present the results of the Air Pollution and Health: A European Approach 2 (APHEA2) project on short-term effects of ambient particles on mortality with emphasis on effect modification. We used daily measurements for particulate matter less than 10 microm in aerodynamic diameter (PM10) and/or black smoke from 29 European cities. We considered confounding from other pollutants as well as meteorologic and chronologic variables. We investigated several variables describing the cities' pollution, climate, population, and geography as potential effect modifiers. For the individual city analysis, generalized additive models extending Poisson regression, using a smoother to control for seasonal patterns, were applied. To provide quantitative summaries of the results and explain remaining heterogeneity, we applied second-stage regression models. The estimated increase in the daily number of deaths for all ages for a 10 microg/m3 increase in daily PM10 or black smoke concentrations was 0.6% [95% confidence interval (CI) = 0.4-0.8%], whereas for the elderly it was slightly higher. We found important effect modification for several of the variables studied. Thus, in a city with low average NO2, the estimated increase in daily mortality for an increase of 10 microg/m3 in PM10 was 0.19 (95% CI = 0.00-0.41), whereas in a city with high average NO2 it was 0.80% (95% CI = 0.67-0.93%); in a relatively cold climate the corresponding effect was 0.29% (95% CI = 0.16-0.42), whereas in a warm climate it was 0.82% (95% CI = 0.69-0.96); in a city with low standardized mortality rate it was 0.80% (95% CI = 0.65-0.95%), and in one with a high rate it was 0.43% (95% CI = 0.24-0.62). Our results confirm those previously reported on the effects of ambient particles on mortality. Furthermore, they show that the heterogeneity found in the effect parameters among cities reflects real effect modification, which is explained by specific city characteristics.
High temperatures have a specific impact on respiratory admissions, particularly in the elderly population, but the underlying mechanisms are poorly understood. Why high temperature increases cardiovascular mortality but not cardiovascular admissions is also unclear. The impact of extreme heat events on respiratory admissions is expected to increase in European cities as a result of global warming and progressive population aging.
BackgroundThe present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity.MethodsHeat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated.ResultsThe effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions.ConclusionsClimate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.
A progressive global increase in the burden of allergic diseases has affected the industrialized world over the last half century and has been reported in the literature. The clinical evidence reveals a general increase in both incidence and prevalence of respiratory diseases, such as allergic rhinitis (common hay fever) and asthma. Such phenomena may be related not only to air pollution and changes in lifestyle, but also to an actual increase in airborne quantities of allergenic pollen. Experimental enhancements of carbon dioxide (CO) have demonstrated changes in pollen amount and allergenicity, but this has rarely been shown in the wider environment. The present analysis of a continental-scale pollen data set reveals an increasing trend in the yearly amount of airborne pollen for many taxa in Europe, which is more pronounced in urban than semi-rural/rural areas. Climate change may contribute to these changes, however increased temperatures do not appear to be a major influencing factor. Instead, we suggest the anthropogenic rise of atmospheric CO levels may be influential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.