The solution behavior of auranofin, EtPAuCl and EtPAuI, as well as their interactions with hen egg white lysozyme, single strand oligonucleotide, and ds-DNA were comparatively analyzed through NMR spectroscopy, ESI-MS, ethidium bromide displacement, DNA melting and viscometric tests. The cytotoxic effects toward representative colorectal cancer cell lines were found to be strong and similar in the three cases and a good correlation could be established between the cytotoxicity and the ability to inhibit thioredoxin reductase; remarkably, acute toxicity experiments for EtPAuI confirmed that, similarly to auranofin, this drug is well tolerated in a murine model. Overall, a very similar profile emerges for EtPAuI and EtPAuCl, which retain the potent cytotoxic effects of auranofin while showing some peculiar features. These results demonstrate that the presence of the thiosugar moiety is not mandatory for the pharmacological action, suggesting that the tuning of some relevant chemical properties such as lipophilicity could be exploited to improve bioavailability, with no loss of the pharmacological effects.
A variety of gold(III) and gold(I) derivatives of 2-(2'-pyridyl)benzimidazole (pbiH) were synthesized and fully characterized and their antiproliferative properties evaluated in a representative ovarian cancer cell line. The complexes include the mononuclear species [(pbi)AuX(2)] (X = Cl, 1; OAc, 2), [(pbiH)AuCl] (3), [(pbiH)Au(PPh(3))][PF(6)] (4-PF(6)), and [(pbi)Au(L)] (L = PPh(3), 5; TPA, 6), and the binuclear gold(I)/gold(I) and gold(I)/gold(III) derivatives [(PPh(3))(2)Au(2)(μ(2)-pbi)][PF(6)] (10-PF(6)), [ClAu(μ(3)-pbi)AuCl(2)] (7),and [(PPh(3))Au(μ(3)-pbi)AuX(2)][PF(6)] (X = Cl, 8-PF(6); OAc, 9-PF(6)). The molecular structures of 6, 7, and 10-PF(6) were determined by X-ray diffraction analysis. The chemical behavior of these compounds in solution was analyzed both by cyclic voltammetry in DMF and absorption UV-vis spectroscopy in an aqueous buffer. Overall, the stability of these gold compounds was found to be acceptable for the cellular studies. For all complexes, relevant antiproliferative activities in vitro were documented against A2780 human ovarian carcinoma cells, either resistant or sensitive to cisplatin, with IC(50) values falling in the low micromolar or even in the nanomolar range. The investigated gold compounds were found to overcome resistance to cisplatin to a large degree. Results are interpreted and discussed in the frame of current knowledge on cytotoxic and antitumor gold compounds.
Two novel gold carbene compounds, namely, chlorido (1-butyl-3-methyl-imidazole-2-ylidene) gold(I) (1) and bis(1-butyl-3-methyl-imidazole-2-ylidene) gold(I) (2), were prepared and characterized as prospective anticancer drug candidates. These compounds consist of a gold(I) center linearly coordinated either to one N-heterocyclic carbene (NHC) and one chloride ligand (1) or to two identical NHC ligands (2). Crystal structures were solved for both compounds, the resulting structural data being in good agreement with expectations. We wondered whether the presence of two tight carbene ligands in 2 might lead to biological properties distinct from those of the monocarbene complex 1. Notably, in spite of their appreciable structural differences, these two compounds manifested similarly potent cytotoxic actions in vitro when challenged against A2780 human ovarian carcinoma cells. In addition, both were able to overcome resistance to cisplatin in the A2780R line. Solution studies revealed that these gold carbene complexes are highly stable in aqueous buffers at physiological pH. Their reactivity with proteins was explored: no adduct formation was detected even upon a long incubation with the model proteins cytochrome c and lysozyme; in contrast, both compounds were able to metalate, to a large extent, the copper chaperone Atox-1, bearing a characteristic CXXC motif. The precise nature of the resulting gold-Atox-1 adducts was elucidated through ESI-MS analysis. On the basis of these findings, it is proposed that the investigated gold(I) carbene compounds are promising antiproliferative agents warranting a wider pharmacological evaluation. Most likely these gold compounds produce their potent biological effects through selective metalation and impairment of a few crucial cellular proteins.
A series of structurally related oxo-bridged binuclear gold(III) compounds, [Au2(mu-O)2(N;N)2](PF6)2, where N;N is 2,2'-bipyridine or a substituted 2,2'-bipyridine, have recently been shown to exhibit appreciable stability under physiological-like conditions and to manifest important antiproliferative effects toward selected human tumor cell lines (J. Med. Chem. 2006, 49, 5524). The crystal structures of four members of this series, namely, [Au2(mu-O)2(bipy)2](PF6)2, cis-[Au2(mu-O)2(6-Mebipy)2](PF6)2, trans-[Au2(mu-O)2(6-oXylbipy)2](PF6)2, and [Au2(mu-O)2(6,6'-Me2bipy)2](PF6)2, have been solved here and the respective structural parameters comparatively analyzed. Remarkably, all of the compounds contain a common structural motif consisting of a Au2O2 "diamond core" linked to two bipyridine ligands in a roughly planar arrangement. Interestingly, introduction of different kinds of alkyl or aryl substituents on the 6 (and 6') position(s) of the bipyridine ligand leads to small structural changes that nonetheless greatly affect the reactivity of the metal centers. The chemical behavior of these compounds in solution has been studied in detail, focusing in particular on the electrochemical properties. Some initial correlations among the structural parameters, the chemical behavior in solution, and the known cytotoxic effects of these compounds are proposed. Notably, we have found that the 6,6'-dimethyl-2,2'-bipyridine derivative, which showed the largest structural deviations with respect to the model compound [Au2(mu-O)2(bipy)2](PF6)2, also had the highest oxidizing power, the least thermal stability, and the greatest cytotoxic activity. The positive correlation that exists between the oxidizing power and the antiproliferative effects seems to be of particular interest. Moreover, the electronic structures of these compounds were extensively analyzed using DFT methods, and the effects of the various substituents on reactivity were predicted; overall, very good agreement between theoretical expectations and experimental data was achieved. In turn, theoretical predictions offer interesting hints for the design of new, more active binuclear gold(III) compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.