Our results show no statistically significant difference in the combined outcome of mortality or BPD between the 2 ventilation groups in prenatally diagnosed congenital diaphragmatic hernia infants. Other outcomes, including shorter ventilation time and lesser need of extracorporeal membrane oxygenation, favored conventional ventilation.
; for the STOP-BPD Study Group IMPORTANCE Dexamethasone initiated after the first week of life reduces the rate of death or bronchopulmonary dysplasia (BPD) but may cause long-term adverse effects in very preterm infants. Hydrocortisone is increasingly used as an alternative, but evidence supporting its efficacy and safety is lacking. OBJECTIVE To assess the effect of hydrocortisone initiated between 7 and 14 days after birth on death or BPD in very preterm infants. DESIGN, SETTING, AND PARTICIPANTS Double-blind, placebo-controlled randomized trial conducted in 19 neonatal intensive care units in the Netherlands and Belgium from November 15, 2011, to December 23, 2016, among preterm infants with a gestational age of less than 30 weeks and/or birth weight of less than 1250 g who were ventilator dependent between 7 and 14 days of life, with follow-up to hospital discharge ending December 12, 2017. INTERVENTIONS Infants were randomly assigned to receive a 22-day course of systemic hydrocortisone (cumulative dose, 72.5 mg/kg) (n = 182) or placebo (n = 190). MAIN OUTCOMES AND MEASURES The primary outcome was a composite of death or BPD assessed at 36 weeks' postmenstrual age. Twenty-nine secondary outcomes were analyzed up to hospital discharge, including death and BPD at 36 weeks' postmenstrual age. RESULTS Among 372 patients randomized (mean gestational age, 26 weeks; 55% male), 371 completed the trial; parents withdrew consent for 1 child treated with hydrocortisone. Death or BPD occurred in 128 of 181 infants (70.7%) randomized to hydrocortisone and in 140 of 190 infants (73.7%) randomized to placebo (adjusted risk difference, −3.6% [95% CI, −12.7% to 5.4%]; adjusted odds ratio, 0.87 [95% CI, 0.54-1.38]; P = .54). Of 29 secondary outcomes, 8 showed significant differences, including death at 36 weeks' postmenstrual age (15.5% with hydrocortisone vs 23.7% with placebo; risk difference, −8.2% [95% CI, −16.2% to −0.1%]; odds ratio, 0.59 [95% CI, 0.35-0.995]; P = .048). Twenty-one outcomes showed nonsignificant differences, including BPD (55.2% with hydrocortisone vs 50.0% with placebo; risk difference, 5.2% [95% CI, −4.9% to 15.2%]; odds ratio, 1.24 [95% CI, 0.82-1.86]; P = .31). Hyperglycemia requiring insulin therapy was the only adverse effect reported more often in the hydrocortisone group (18.2%) than in the placebo group (7.9%). CONCLUSIONS AND RELEVANCE Among mechanically ventilated very preterm infants, administration of hydrocortisone between 7 and 14 days after birth, compared with placebo, did not improve the composite outcome of death or BPD at 36 weeks' postmenstrual age. These findings do not support the use of hydrocortisone for this indication.
Neonatal drug dosing needs to be based on the physiological characteristics of the newborn and the pharmacokinetic parameters of the drug. Size-related changes can in part be modelled based on allometry and relates to the observation that metabolic rate relates to weight by a kg 0.75 trend. Until adult metabolic activity has been reached, ontogeny, i.e. isoenzyme-specific maturation and maturation of renal clearance also contributes to drug metabolism, making isoenzyme-specific documentation of maturation necessary. Changes in body composition and ontogeny are most prominent in neonates. The body fat content (/kg) is markedly lower and the body water content (/kg) is markedly higher in neonates. These findings have an impact on the distribution volume of both lipophilic and hydrophilic drugs. Drugs are cleared either by metabolism or elimination. While the first is mainly hepatic, the second route is mainly renal. Both hepatic metabolism and renal clearance display maturation in early life although other covariables (e.g. polymorphisms, co-administration of drugs, first pass metabolism, disease characteristics) further contribute to the interindividual variability in drug disposition. Documentation of these maturational processes based on in vivo 'case' studies is of value since these drug-specific observations can subsequently be extrapolated to other drugs which are either already being prescribed or even considered for use in neonates by the introduction of these observations in 'generic physiologically-based pharmacokinetic' models.
A mean paracetamol steady-state target concentration above 10 mg/l at trough can be achieved using a loading dose of 40 mg/kg and maintenance doses of 20 mg/kg 6 h in 28-week PCA neonates, 25 mg/kg 6 h at 32 weeks, 30 mg/kg 6 h at 36 weeks and 20 mg/kg 4 h at term (propacetamol doses). Since the role of the oxidative enzyme CYP2E1 and production of the hepatotoxic metabolite N-acetyl-p-benzoquinone-imine still is unknown in premature neonates, lower doses scaled by age-related clearance and centred on a daily dose of 60 mg/kg per day in a child of 6-8 years with a clearance of 0.25 l/h per kg (12.5 l/h per 70 kg) may be more appropriate.
Maturational clearance of tramadol is almost complete by 44 weeks PCA. A target concentration of 300 microg litre(-1) is achieved after a bolus of tramadol hydrochloride 1 mg kg(-1) and can be maintained by infusion of tramadol hydrochloride 0.09 mg kg(-1) h(-1) at 25 weeks PCA, 0.14 mg kg(-1) h(-1) at 30 weeks PCA, 0.17 mg kg(-1) h(-1) at 35 weeks PCA, 0.18 mg kg(-1) h(-1) at 40 weeks, 0.19 mg kg(-1) h(-1) at 50 weeks PCA to 1 yr, 0.18 mg kg(-1) h(-1) at 3 yr and 0.12 mg kg(-1) h(-1) in adulthood. CYP2D6 activity was observed as early as 25 weeks PCA, but the impact of CYP2D6 polymorphism on the variability in pharmacokinetics, metabolism and pharmacodynamics of tramadol remains to be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.