The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics [1][2][3] . These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities 4-10 . Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period 11 . Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.All grapevine varieties are highly heterozygous; preliminary data showed that there was as much as 13% sequence divergence between alleles, which would hinder reliable contig assembly when a wholegenome shotgun strategy was used for sequencing. Our consortium therefore selected the grapevine PN40024 genotype for sequencing. This line, originally derived from Pinot Noir, has been bred close to full homozygosity (estimated at about 93%) by successive selfings, permitting a high-quality whole-genome shotgun assembly.A total of 6.2 million end-reads were produced by our consortium, representing an 8.4-fold coverage of the genome. Within the assembly, performed with Arachne 12 , 316 supercontigs represent putative allelic haplotypes that constitute 11.6 million bases (Mb). These values are in good fit with the 7% residual heterozygosity of PN40024 assessed by using genetic markers. When considering only one of the haplotypes in each heterozygous region, the assembly (Table 1a) consists of 19,577 contigs (N 50 5 65.9 kilobases (kb), where N 50 corresponds to the size of the shorter supercontig or contig in a subset representing half of the assembly size) and 3,514 supercontigs (N 50 5 2.07 Mb) totalling 487 Mb. This value is close to the 475 Mb previously reported for the grapevine genome size 13 .Using a set of 409 molecular markers from the reference grapevine map 14 , 69% of the assembled 487 Mb, arranged into 45 ultracontigs
Three RFLP maps, as well as several RAPD maps have been developed in common bean (Phaseolus vulgaris L.). In order to align these maps, a core linkage map was established in the recombinant inbred population BAT93;Jalo EEP558 (BJ). This map has a total length of 1226 cM and comprises 563 markers, including some 120 RFLP and 430 RAPD markers, in addition to a few isozyme and phenotypic marker loci. Among the RFLPs mapped were markers from the University of California, Davis (established in the F of the BJ cross), University of Paris-Orsay, and University of Florida maps. These shared markers allowed us to Communicated by P. M. A. Tigerstedt
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.