The NERC and CEH trade marks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses, i.e. additive, antagonistic and synergistic effects.Currently we know little about the spatial scale relevant for the outcome of such interactions and about effect sizes. This knowledge gap needs to be filled to underpin future land management decisions or climate mitigation interventions, for protecting and restoring freshwater ecosystems. The study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe producing 174 combinations of paired-stressor effects on a biological response variable. Generalised linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive and 33% in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes the frequency of additive and interactive effects was similar for all spatial scales addressed, while for rivers this frequency increased with scale. Nutrient enrichment was the overriding stressor for lakes, generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.
In Europe there is a renewed focus on relationships between chemical determinands and ecological impact as a result of the Water Framework Directive. In this paper we use regression analysis to examine the relationship of growing season mean chlorophyll a concentration with total phosphorus and total nitrogen using summary data from over 1000European lakes. For analysis, lakes were grouped into types with three categories of mean depth, alkalinity and humic content. The lakes were also divided into broad geographic regions covering Atlantic, Northern, Central/Baltic and for some types the Mediterranean areas of Europe. Chlorophyll a was found to be significantly related to both total phosphorus and total nitrogen, although total phosphorus was almost always found to be the best predictor of chlorophyll. Different nutrient chlorophyll relationships were found for lakes according to mean depth and alkalinity, although no significant effect of geographic region or humic content was found for the majority of lake types. We identified three groups of lakes with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.