Pseudomonas aeruginosa is a major cause of nosocomial infections. This organism shows a remarkable capacity to resist antibiotics, either intrinsically (because of constitutive expression of beta-lactamases and efflux pumps, combined with low permeability of the outer-membrane) or following acquisition of resistance genes (e.g., genes for beta-lactamases, or enzymes inactivating aminoglycosides or modifying their target), over-expression of efflux pumps, decreased expression of porins, or mutations in quinolone targets. Worryingly, these mechanisms are often present simultaneously, thereby conferring multiresistant phenotypes. Susceptibility testing is therefore crucial in clinical practice. Empirical treatment usually involves combination therapy, selected on the basis of known local epidemiology (usually a beta-lactam plus an aminoglycoside or a fluoroquinolone). However, therapy should be simplified as soon as possible, based on susceptibility data and the patient's clinical evolution. Alternative drugs (e.g., colistin) have proven useful against multiresistant strains, but innovative therapeutic options for the future remain scarce, while attempts to develop vaccines have been unsuccessful to date. Among broad-spectrum antibiotics in development, ceftobiprole, sitafloxacin and doripenem show interesting in-vitro activity, although the first two molecules have been evaluated in clinics only against Gram-positive organisms. Doripenem has received a fast track designation from the US Food and Drug Administration for the treatment of nosocomial pneumonia. Pump inhibitors are undergoing phase I trials in cystic fibrosis patients. Therefore, selecting appropriate antibiotics and optimising their use on the basis of pharmacodynamic concepts currently remains the best way of coping with pseudomonal infections.
Background
Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis (CF) in 10% of patients..
Methods
This randomized, double-blind, placebo-controlled study enrolled 238 patients ≥6 years with nmCF to receive oral ataluren 10 mg/kg in the morning, 10 mg/kg mid-day, and 20 mg/kg in the evening or matching placebo for 48 weeks. The primary endpoint was relative change in % predicted forced expiratory volume in one second (FEV1) at Week 48; the secondary endpoint was the rate of pulmonary exacerbations. This study is registered with ClinicalTrials.gov, number NCT00803205.
Findings
There was no statistically significant difference in relative change from baseline in % predicted FEV1between ataluren and placebo at Week 48(-2•5% vs -5•5%, p=0.1235). The rate of pulmonary exacerbations was not statistically different between treatment arms (rate ratio 0.77 (95% CI 0.57, 1.05), p=0.0992). However, post hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5.7% difference in relative change from baseline in % predicted FEV1 between ataluren and placebo at Week 48 (-0.7% vs -6.4%, nominal p=0•008, adjusted for multiplicity p = 0•024) and 40% fewer exacerbations in ataluren-treated patients (OR 0.60 (95% CI 0•42, 0•86), nominal p=0•006, adjusted for multiplicity p = 0•018).
Interpretation
While there was no statistically significant improvement in lung function or exacerbation rate in the ITT population of cystic fibrosis patients with nonsense mutations treated with ataluren, treatment might be beneficial for nmCF patients not receiving chronic inhaled tobramycin.
Summary
Cilia use microtubule-based intraflagellar transport (IFT) to organize intercellular signaling. The ciliopathies are a spectrum of human disease resulting from defects in cilia structure or function. Mechanisms regulating assembly of ciliary multiprotein complexes and their transport to the base of cilia remain largely unknown. Combine proteomics, in vivo imaging, and genetic analysis of proteins linked to planar cell polarity (Inturned, Fuzzy, WDPCP), we identified and characterized a new genetic module, which we term CPLANE (ciliogenesis and planar polarity effector) and an extensive associated protein network. CPLANE proteins physically and functionally interact with the poorly understood ciliopathy protein Jbts17 at basal bodies, where they act to recruit a specific subset of IFT-A proteins. In the absence of CPLANE, defective IFT-A particles enter the axoneme, and IFT-B trafficking is severely perturbed. Accordingly, mutation of CPLANE genes elicits specific ciliopathy phenotypes in mouse models and is associated with novel ciliopathies in human patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.