Mitochondrial Ca(2+) uptake has key roles in cell life and death. Physiological Ca(2+) signaling regulates aerobic metabolism, whereas pathological Ca(2+) overload triggers cell death. Mitochondrial Ca(2+) uptake is mediated by the Ca(2+) uniporter complex in the inner mitochondrial membrane, which comprises MCU, a Ca(2+)-selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca(2+) uptake at low cytosolic Ca(2+) concentrations was increased, and cytosolic Ca(2+) signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy and the core myopathies involves abnormal mitochondrial Ca(2+) handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca(2+) signaling, demonstrating the crucial role of mitochondrial Ca(2+) uptake in humans.
Our study provides a framework for providing information to patients with Duchenne muscular dystrophy and their families when introducing GC therapy. The study also highlights the importance of collecting longitudinal natural history data on patients treated according to standardised protocols, and clearly identifies the benefits and the side-effect profile of two treatment regimens, which will help with informed choices and implementation of targeted surveillance.
Objective:To define the mechanism responsible for fatigue, lethargy, and weakness in 2 cousins who had a normal muscle biopsy.Methods:Exome sequencing, long-range PCR, and Sanger sequencing to identify the pathogenic mutation. Functional analysis in the patient fibroblasts included oxygen consumption measurements, extracellular acidification studies, Western blotting, and calcium imaging, followed by overexpression of the wild-type protein.Results:Analysis of the exome sequencing depth revealed a homozygous deletion of exon 1 of MICU1 within a 2,755-base pair deletion. No MICU1 protein was detected in patient fibroblasts, which had impaired mitochondrial calcium uptake that was rescued through the overexpression of the wild-type allele.Conclusions:MICU1 mutations cause fatigue and lethargy in patients with normal mitochondrial enzyme activities in muscle. The fluctuating clinical course is likely mediated through the mitochondrial calcium uniporter, which is regulated by MICU1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.