Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. Our mechanistic studies demonstrate that S63845 potently kills MCL1-dependent cancer cells, including multiple myeloma, leukaemia and lymphoma cells, by activating the BAX/BAK-dependent mitochondrial apoptotic pathway. In vivo, S63845 shows potent anti-tumour activity with an acceptable safety margin as a single agent in several cancers. Moreover, MCL1 inhibition, either alone or in combination with other anti-cancer drugs, proved effective against several solid cancer-derived cell lines. These results point towards MCL1 as a target for the treatment of a wide range of tumours.
NXL101 is one of a new class of quinoline antibacterial DNA gyrase and topoisomerase IV inhibitors showing potent activity against gram-positive bacteria, including methicillin-and fluoroquinolone-resistant strains. NXL101 inhibited topoisomerase IV more effectively than gyrase from Escherichia coli, whereas the converse is true of enzymes from Staphylococcus aureus. This apparent target preference is opposite to that which is associated with most fluoroquinolone antibiotics. In vitro isolation of S. aureus mutants resistant to NXL101 followed by cloning and sequencing of the genes encoding gyrase and topoisomerase IV led to the identification of several different point mutations within, or close to, the quinolone resistance-determining region (QRDR) of GyrA. However, the mutations were not those that are most frequently associated with decreased sensitivity to quinolones. A fluoroquinolone-resistant mutant variant of gyrase generated in vitro was highly resistant to inhibition by the fluoroquinolones ciprofloxacin and moxifloxacin but remained fully susceptible to inhibition by NXL101. Two mutant gyrases constructed in vitro, with mutations in gyrA engineered according to those most frequently found in S. aureus strains resistant to NXL101, were insensitive to inhibition by NXL101 and had a diminished sensitivity to ciprofloxacin and moxifloxacin. Certain combinations of mutations giving rise to NXL101 resistance and those giving rise to fluoroquinolone resistance may be mutually exclusive.
The human T-cell lymphotropic virus type 1 (HTLV-1) infects and transforms CD4؉ lymphocytes and causes adult T-cell leukemia/lymphoma (ATLL), an aggressive lymphoproliferative disease that is often fatal. Here, we demonstrate that the HTLV-1 pX splice-variant p30 II markedly enhances the transforming potential of Myc and transcriptionally activates the human cyclin D2 promoter, dependent upon its conserved Myc-responsive E-box enhancer elements, which are associated with increased S-phase entry and multinucleation. Enhancement of c-Myc transforming activity by HTLV-1 p30 II is dependent upon the transcriptional coactivators, transforming transcriptional activator protein/p434 and TIP60, and it requires TIP60 histone acetyltransferase (HAT) activity and correlates with the stabilization of HTLV-1 p30 II /Myc-TIP60 chromatin-remodeling complexes. The p30 II oncoprotein colocalizes and coimmunoprecipitates with Myc-TIP60 complexes in cultured HTLV-1-infected ATLL patient lymphocytes. Amino acid residues 99 to 154 within HTLV-1 p30 II interact with the TIP60 HAT, and p30 II transcriptionally activates numerous cellular genes in a TIP60-dependent or TIP60-independent manner, as determined by microarray gene expression analyses. Importantly, these results suggest that p30 II functions as a novel retroviral modulator of Myc-TIP60-transforming interactions that may contribute to adult T-cell leukemogenesis.
BackgroundNXL104 is a novel-structure β-lactamase inhibitor with potent activity against both class A and class C enzymes. Among the class A carbapenemases, KPC-type enzymes are now spreading rapidly and KPC-related carbapenemase resistance is an emerging phenomenon of great clinical importance. The activity of NXL104 against KPC β-lactamases was examined.MethodsEnzymatic activity of purified recombinant KPC-2 was measured with nitrocefin as reporter substrate and inhibition by NXL104 was measured by determination of IC50 values. Antimicrobial susceptibility testing of various β-lactams combined with a fixed concentration of NXL104 at 4 mg/L against strains producing KPC enzymes was performed by the broth microdilution method.ResultsNXL104 was a potent inhibitor of KPC-2 with an IC50 of 38 nM. NXL104 restored the antimicrobial activity of ceftazidime, ceftriaxone, imipenem and piperacillin against Enterobacteriaceae strains producing KPC-2 or KPC-3. MIC values of ceftazidime against KPC producers were reduced by up to 1000-fold by combination with NXL104.ConclusionsNXL104 inhibitory activity is unique in terms of spectrum, encompassing class A extended-spectrum β-lactamases, class C enzymes and class A carbapenemases. Given the limited therapeutic options available for infections caused by multiresistant Enterobacteriaceae isolates, NXL104 β-lactamase inhibitor is a promising agent to be used in combination with a β-lactam to protect its antibacterial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.