Common SNPs in the chromosome 17q12-q21 region alter the risk for asthma, type 1 diabetes, primary biliary cirrhosis, and Crohn disease. Previous reports by us and others have linked the disease-associated genetic variants with changes in expression of GSDMB and ORMDL3 transcripts in human lymphoblastoid cell lines (LCLs). The variants also alter regulation of other transcripts, and this domain-wide cis-regulatory effect suggests a mechanism involving long-range chromatin interactions. Here, we further dissect the disease-linked haplotype and identify putative causal DNA variants via a combination of genetic and functional analyses. First, high-throughput resequencing of the region and genotyping of potential candidate variants were performed. Next, additional mapping of allelic expression differences in Yoruba HapMap LCLs allowed us to fine-map the basis of the cis-regulatory differences to a handful of candidate functional variants. Functional assays identified allele-specific differences in nucleosome distribution, an allele-specific association with the insulator protein CTCF, as well as a weak promoter activity for rs12936231. Overall, this study shows a common disease allele linked to changes in CTCF binding and nucleosome occupancy leading to altered domain-wide cis-regulation. Finally, a strong association between asthma and cis-regulatory haplotypes was observed in three independent family-based cohorts (p = 1.78 x 10(-8)). This study demonstrates the requirement of multiple parallel allele-specific tools for the investigation of noncoding disease variants and functional fine-mapping of human disease-associated haplotypes.
Background: Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. Objective: We sought to identify differential DNA methylation in newborns and children related to childhood asthma. Methods: Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. Results: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. Conclusion: Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium. (J Allergy Clin Immunol 2019;143:2062-74.)
Chromosomal region 17q12-q21 is one of the best-replicated genome-wide association study (GWAS) hits and associated with childhood-onset asthma. However, the mechanism by which the genetic association is restricted to childhood-onset disease is unclear. During childhood, more boys than girls develop asthma. Therefore, we tested the hypothesis that the 17q12-q21 genetic association was sex-specific. Indeed, a TDT test showed that in the Saguenay-Lac-Saint-Jean familial collection, the 17q12-q21 association was significant among male, but not among female asthmatic subjects. We next hypothesized that the bias in the genetic association resulted from sex-specific and/or age-dependent DNA methylation at regulatory regions and determined the methylation profiles of five 17q12-q21 gene promoters using the bisulfite sequencing methylation assay. We identified a single regulatory region within the zona pellucida binding protein 2 (ZPBP2) gene, which showed statistically significant differences between males and females with respect to DNA methylation. DNA methylation also varied with age and was higher in adult males compared to boys. We have recently identified two functionally important polymorphisms, both within the ZPBP2 gene that influence expression levels of neighboring genes. Combined with the results of the present work, these data converge pointing to the same 5 kb region within the ZPBP2 gene as a critical region for both gene expression regulation and predisposition to asthma. Our data show that sex- and age-dependent DNA methylation may act as a modifier of genetic effects and influence the results of genetic association studies.
Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma. Studies in adults are rare, and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study of blood DNA methylation in adults in relation to non-atopic and atopic asthma.We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a U.S. agricultural cohort. Atopy was defined by serum specific immunoglobulin E. Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.No associations were observed with atopy without asthma. Numerous CpGs were differentially methylated in non-atopic asthma (8 at family-wise error rate [FWER] p<9×10−8; 524 at False Discovery Rate [FDR]<0.05) and implicated 382 novel genes. More CpGs were identified in atopic asthma (181 at FWER; 1086 at FDR) and implicated 569 novel genes. 104 FDR CpGs overlapped. 35% of CpGs in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation.We identified numerous, distinct differentially methylated CpGs in non-atopic and atopic asthma. Many CpGs from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease and implicate novel genes associated with non-atopic and atopic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.