In pancreatic -cells, glucose metabolism signals insulin secretion by altering the cellular array of messenger molecules. ATP is particularly important, given its role in regulating cation channel activity, exocytosis, and events dependent upon its hydrolysis. Uncoupling protein (UCP)-2 is proposed to catalyze a mitochondrial inner-membrane H ؉ leak that bypasses ATP synthase, thereby reducing cellular ATP content. Previously, we showed that overexpression of UCP-2 suppressed glucose-stimulated insulin secretion (GSIS) in isolated islets (1). The aim of this study was to identify downstream consequences of UCP-2 overexpression and to determine whether insufficient insulin secretion in a diabetic model was correlated with increased endogenous UCP-2 expression. In isolated islets from normal rats, the degree to which GSIS was suppressed was inversely correlated with the amount of UCP-2 expression induced. Depolarizing the islets with KCl or inhibiting ATP-dependent K ؉ (K ATP ) channels with glybenclamide elicited similar insulin secretion in control and UCP-2-overexpressing islets. The glucose-stimulated mitochondrial membrane (⌿ m ) hyperpolarization was reduced in -cells overexpressing UCP-2. ATP content of UCP-2-induced islets was reduced by 50%, and there was no change in the efflux of Rb ؉ at high versus low glucose concentrations, suggesting that low ATP led to reduced glucose-induced depolarization, thereby causing reduced insulin secretion. Sprague-Dawley rats fed a diet with 40% fat for 3 weeks were glucose intolerant, and in vitro insulin secretion at high glucose was only increased 8.5-fold over basal, compared with 28-fold in control rats. Islet UCP-2 mRNA expression was increased twofold. These studies provide further strong evidence that UCP-2 is an important negative regulator of -cell insulin secretion and demonstrate that reduced ⌬⌿ m and increased activity of K ATP channels are mechanisms by which UCP-2-mediated effects are mediated. These studies also raise the possibility that a pathological upregulation of UCP-2 expression in the prediabetic state could contribute to the loss of glucose responsiveness observed in obesity-related type 2 diabetes in humans.
Knowledge of how the brain achieves its diverse central control of basic physiology is severely limited by the virtual absence of appropriate cell models. Isolation of clonal populations of unique peptidergic neurons from the hypothalamus will facilitate these studies. Herein we describe the mass immortalization of mouse primary hypothalamic cells in monolayer culture, resulting in the generation of a vast representation of hypothalamic cell types. Subcloning of the heterogeneous cell populations resulted in the establishment of 38 representative clonal neuronal cell lines, of which 16 have been further characterized by analysis of 28 neuroendocrine markers. These cell lines represent the first available models to study the regulation of neuropeptides associated with the control of feeding behavior, including neuropeptide Y, ghrelin, urocortin, proopiomelanocortin, melanin-concentrating hormone, neurotensin, proglucagon, and GHRH. Importantly, a representative cell line responds appropriately to leptin stimulation and results in the repression of neuropeptide Y gene expression. These cell models can be used for detailed molecular analysis of neuropeptide gene regulation and signal transduction events involved in the direct hormonal control of unique hypothalamic neurons, not yet possible in the whole brain. Such studies may contribute information necessary for the strategic design of therapeutic interventions for complex neuroendocrine disorders, such as obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.