We used successfully human foreskin fibroblasts as feeder cells for derivation and continued undifferentiated growth of hES cells. These feeder cells are convenient for IVF units, because no fetal human tissues or tissue from operations are needed.
Identification of molecular components that define a pluripotent human embryonic stem cell (hESC) provides the basis for understanding the molecular mechanisms regulating the maintenance of pluripotency and induction of differentiation. We compared the gene expression profiles of seven genetically independent hESC lines with those of nonlineage-differentiated cells derived from each line. A total of 8,464 transcripts were expressed in all hESC lines. More than 45% of them have no yet-known biological function, which indicates that a high number of unknown factors contribute to hESC pluripotency. Among these 8,464 transcripts, 280 genes were specific for hESCs and 219 genes were more than twofold differentially expressed in all hESC lines compared with nonlineage-differentiated cells. They represent genes implicated in the maintenance of pluripotency and those involved in early differentiation. The chromosomal distribution of these hESC-enriched genes showed over-representation in chromosome 19 and under-representation in chromosome 18. Although the overall gene expression profiles of the seven hESC lines were markedly similar, each line also had a subset of differentially expressed genes reflecting their genetic variation and possibly preferential differentiation potential. Limited overlap between gene expression profiles illustrates the importance of cross-validation of results between different ESC lines. Stem Cells 2005;23:1343-1356
Recent studies have suggested that human embryonic stem cells (HESC) are immune-privileged and may thereby circumvent rejection. The expression of immunologically active molecules was studied by DNA microarray analysis and by flow cytometry. HESC were transplanted into immunologically competent mice and traced by fluorescence in-situ hybridization (FISH) and immunohistochemistry. The ability of HESC to directly and indirectly induce immune responses in CD4+ T-cells from naive and transplanted mice was studied. Their ability to induce immune responses of human CD4+ T-cells, when cultured in the presence of dendritic cells (DC) syngeneic to responder T-cells, was also analysed. HESC demonstrated expression of HLA class I and HLA class II genes, but the cell surface expression of HLA class II molecules was low even after incubation with IFNgamma. In wild-type mice, HESC could be demonstrated by FISH until 3 days after transplantation and were surrounded by heavy infiltrates of T-cells and macrophages. HESC induced a similar immune response as human fibroblast cells (HFib) on naive and immunized T-cells, both directly and in the presence of syngeneic DC. A similar response was observed in the allogeneic setting. It is concluded that HESC are immunologically inert and do not inhibit immune responses during direct or indirect antigen presentation, and they were acutely rejected in a xenogeneic setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.