BackgroundSocietal challenges that call for a new type of engineer suggest the need for the implementation of interdisciplinary engineering education (IEE). The aim of IEE is to train engineering students to bring together expertise from different disciplines in a single context. This review synthesizes IEE research with a focus on characterizing vision, teaching practices, and support.PurposeWe aim to show how IEE is conceptualized, implemented, and facilitated in higher engineering education at the levels of curricula and courses. This aim leads to two research questions:What aspects of vision, teaching, and support have emerged as topics of interest in empirical studies of IEE?What points of attention regarding vision, teaching, and support can be identified in empirical studies of IEE as supporting or challenging IEE?Scope/MethodNinety‐nine studies published between 2005 and 2016 were included in a qualitative analysis across studies. The procedure included formulation of research questions, searching and screening of studies according to inclusion/exclusion criteria, description of study characteristics, appraisal, and synthesis of results.ConclusionsChallenges exist for identifying clear learning goals and assessments for interdisciplinary education in engineering (vision). Most pedagogy for interdisciplinary learning is designed to promote collaborative teamwork requiring organization and team management. Our review suggests that developing interdisciplinary skills, knowledge, and values needs sound pedagogy and teaming experiences that provide students with authentic ways of engaging in interdisciplinary practice (teaching). Furthermore, there is a limited understanding of what resources hinder the development of engineering programs designed to support interdisciplinarity (support).
Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.