Ki67 immunohistochemistry (IHC), commonly used as a proliferation marker in breast cancer, has limited value for treatment decisions due to questionable analytical validity. The International Ki67 in Breast Cancer Working Group (IKWG) consensus meeting, held in October 2019, assessed the current evidence for Ki67 IHC analytical validity and clinical utility in breast cancer, including the series of scoring studies the IKWG conducted on centrally stained tissues. Consensus observations and recommendations are: 1) as for estrogen receptor and HER2 testing, preanalytical handling considerations are critical; 2) a standardized visual scoring method has been established and is recommended for adoption; 3) participation in and evaluation of quality assurance and quality control programs is recommended to maintain analytical validity; and 4) the IKWG accepted that Ki67 IHC as a prognostic marker in breast cancer has clinical validity but concluded that clinical utility is evident only for prognosis estimation in anatomically favorable estrogen receptor–positive and HER2-negative patients to identify those who do not need adjuvant chemotherapy. In this T1-2, N0-1 patient group, the IKWG consensus is that Ki67 5% or less, or 30% or more, can be used to estimate prognosis. In conclusion, analytical validity of Ki67 IHC can be reached with careful attention to preanalytical issues and calibrated standardized visual scoring. Currently, clinical utility of Ki67 IHC in breast cancer care remains limited to prognosis assessment in stage I or II breast cancer. Further development of automated scoring might help to overcome some current limitations.
Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease1. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10−8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 14% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.