Background Vast sample sizes are often essential in the quest to disentangle the complex interplay of the genetic, lifestyle, environmental and social factors that determine the aetiology and progression of chronic diseases. The pooling of information between studies is therefore of central importance to contemporary bioscience. However, there are many technical, ethico-legal and scientific challenges to be overcome if an effective, valid, pooled analysis is to be achieved. Perhaps most critically, any data that are to be analysed in this way must be adequately ‘harmonized’. This implies that the collection and recording of information and data must be done in a manner that is sufficiently similar in the different studies to allow valid synthesis to take place.Methods This conceptual article describes the origins, purpose and scientific foundations of the DataSHaPER (DataSchema and Harmonization Platform for Epidemiological Research; http://www.datashaper.org), which has been created by a multidisciplinary consortium of experts that was pulled together and coordinated by three international organizations: P3G (Public Population Project in Genomics), PHOEBE (Promoting Harmonization of Epidemiological Biobanks in Europe) and CPT (Canadian Partnership for Tomorrow Project).Results The DataSHaPER provides a flexible, structured approach to the harmonization and pooling of information between studies. Its two primary components, the ‘DataSchema’ and ‘Harmonization Platforms’, together support the preparation of effective data-collection protocols and provide a central reference to facilitate harmonization. The DataSHaPER supports both ‘prospective’ and ‘retrospective’ harmonization.Conclusion It is hoped that this article will encourage readers to investigate the project further: the more the research groups and studies are actively involved, the more effective the DataSHaPER programme will ultimately be.
Purpose Bayesian multilevel models are increasingly used to overcome the limitations of frequentist approaches in the analysis of complex structured data. This tutorial introduces Bayesian multilevel modeling for the specific analysis of speech data, using the brms package developed in R. Method In this tutorial, we provide a practical introduction to Bayesian multilevel modeling by reanalyzing a phonetic data set containing formant (F1 and F2) values for 5 vowels of standard Indonesian (ISO 639-3:ind), as spoken by 8 speakers (4 females and 4 males), with several repetitions of each vowel. Results We first give an introductory overview of the Bayesian framework and multilevel modeling. We then show how Bayesian multilevel models can be fitted using the probabilistic programming language Stan and the R package brms, which provides an intuitive formula syntax. Conclusions Through this tutorial, we demonstrate some of the advantages of the Bayesian framework for statistical modeling and provide a detailed case study, with complete source code for full reproducibility of the analyses ( https://osf.io/dpzcb /). Supplemental Material https://doi.org/10.23641/asha.7973822
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.