Reproductive longevity is critical for fertility and impacts healthy ageing in women, yet insights into the underlying biological mechanisms and treatments to preserve it are limited. Here, we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in ∼200,000 women of European ancestry. These common alleles influence clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations. Identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increase fertility and extend reproductive life in mice. Causal inference analyses using the identified genetic variants indicates that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases risks of hormone-sensitive cancers. These findings provide insight into the mechanisms governing ovarian ageing, when they act across the life-course, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
This is a repository copy of Breast cancer polygenic risk score and contralateral breast cancer risk.
Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28–1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08–1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21–1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29–1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35–1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.
Background Reproductive factors have been shown to be differentially associated with risk of estrogen receptor (ER) positive and ER-negative breast cancer. However, their associations with intrinsic-like subtypes are less clear. Methods Analyses included up to 23,353 cases, and 71,072 controls pooled from 31 population-based case-control or cohort studies in the Breast Cancer Association Consortium across 16 countries on 4 continents. Polytomous logistic regression was used to estimate the association between reproductive factors and risk of breast cancer by intrinsic-like subtypes (luminal A-like, luminal B-like, luminal B-HER2-like, HER2-enriched-like, and triple-negative) and by invasiveness. All statistical tests were 2-sided. Results Compared to nulliparous women, parous women had a lower risk of luminal A-like, luminal B-like, luminal B-HER2-like and HER2-enriched-like disease. This association was apparent only after approximately 10 years since last birth and became stronger with increasing time (odds ratio [OR] = 0.59, 95% confidence interval [CI] = 0.49 to 0.71; and OR = 0.36, 95% CI = 0.28 to 0.46; for multiparous women with luminal A-like tumors 20-<25 years after last birth and 45-<50 years after last birth, respectively). In contrast, parous women had a higher risk of triple-negative breast cancer right after their last birth (for multiparous women: OR = 3.12, 95%CI = 2.02 to 4.83) that was attenuated with time but persisted for decades (OR = 1.03, 95%CI = 0.79 to 1.34, for multiparous women 25 to < 30 years after last birth). Older age at first birth (P-heterogeneity<.001 for triple-negative compared to luminal-A like) and breastfeeding (P-heterogeneity<.001 for triple-negative compared to luminal-A like) were associated with lower risk of triple-negative but not with other disease subtypes. Younger age at menarche was associated with higher risk of all subtypes; older age at menopause was associated with higher risk of luminal A-like but not triple-negative breast cancer. Associations for in situ tumors were similar to luminal A-like. Conclusion This large and comprehensive study demonstrates a distinct reproductive risk factor profile for triple-negative breast cancer compared to other subtypes, with implications for the understanding of disease etiology and risk prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.