We explored the role of natural and anthropogenic environmental perturbations in shaping the community structure and dynamics of pico-and nanophytoplankton in coastal waters. The distribution patterns of phycoerythrin-rich picocyanobacteria (PE-CYAN) and phycocyanin-rich picocyanobacteria (PC-CYAN), autotrophic picoeukaryotes (PEUK) and nanophytoplankton (NANO) were examined over a period of 3 yr in 24 Mediterranean coastal lagoons displaying wide trophic gradients (from 0.2 to 630 µg chlorophyll a [chl a] l -1 ) and salinity gradients (from fresh to marine waters). In summer, picoplanktonic abundances reached 3 × 10 8 cells l -1, 5 × 10 9 cells l -1 and 6 × 10 10 cells l -1 for PE-CYAN, PC-CYAN and PEUK, respectively. PE-CYAN and PC-CYAN showed opposing responses to environmental gradients, resulting in a restricted dominance of PE-CYAN in oligotrophic marine lagoons and a dominance of PC-CYAN in some eutrophic brackish lagoons. Most lagoons exhibited steady-state nutrient conditions, giving competitive advantages to small eukaryotic algae, even in eutrophic and hypertrophic waters. Among the picophytoplankton, picoeukaryotes (ca. 2 to 3 µm) are the most competitive with increasing nutrient availability; in terms of abundance and biomass, their relative and absolute importance tended to increase with increasing total chl a biomass. Freshwater discharges resulted in large pulses of nutrient and more turbulent systems that altered the structure of the phytoplankton community and stimulated fast-growing NANO composed of phytoflagellates and diatoms (ca. 3 to 6 µm, up to 1.6 × 10 9 cells l -1). Members of the microphytoplankton (ca. 20 to 200 µm) were rarely observed in eutrophic and hypertrophic lagoons and were composed of harmful dinoflagellates in oligotrophic lagoons. These results show that anthropogenic and meteorological changes are highly influential on the composition and size structure of phytoplankton communities.
A cross-ecosystem comparison of data obtained from 20 French Mediterranean lagoons with contrasting eutrophication status provided the basis for investigating the variables that best predict chlorophyll a (Chl a) concentrations and nutrient limitation of phytoplankton biomass along a strong nutrient enrichment gradient. Summer concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) comprised only a small fraction of total nitrogen (TN) and total phosphorus (TP). On the basis of inorganic nutrient concentrations, the most oligotrophic lagoons appeared to be phosphorus-limited, with a tendency towards the development of nitrogen limitation as eutrophication increased, as evidenced by decreasing DIN:DIP ratios. A weak but significantly positive relationship was found between dissolved silicate (DSi) and Chl a, reflecting DSi accumulation in the water column along the trophic state gradient and implying a progressive shift away from potential Si limitation of phytoplankton growth. Observed concentrations of Chl a were far better explained by TN and TP than by DIN and DIP concentrations, suggesting that a total nutrient based approach is likely to be the most appropriate for managing eutrophication in Mediterranean lagoons and other coastal waters. These results give credence to the idea that marine and freshwater environments respond in a similar fashion to nutrient enrichment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.