Worries about the potential negative consequences of popular fat loss regimens for aesthetic purposes in normal weight females have been surfacing in the media. However, longitudinal studies investigating these kinds of diets are lacking. The purpose of the present study was to investigate the effects of a 4-month fat-loss diet in normal weight females competing in fitness-sport. In total 50 participants finished the study with 27 females (27.2 ± 4.1 years) dieting for a competition and 23 (27.7 ± 3.7 years) acting as weight-stable controls. The energy deficit of the diet group was achieved by reducing carbohydrate intake and increasing aerobic exercise while maintaining a high level of protein intake and resistance training in addition to moderate fat intake. The diet led to a ~12% decrease in body weight (P < 0.001) and a ~35–50% decrease in fat mass (DXA, bioimpedance, skinfolds, P < 0.001) whereas the control group maintained their body and fat mass (diet × group interaction P < 0.001). A small decrease in lean mass (bioimpedance and skinfolds) and in vastus lateralis muscle cross-sectional area (ultrasound) were observed in diet (P < 0.05), whereas other results were unaltered (DXA: lean mass, ultrasound: triceps brachii thickness). The hormonal system was altered during the diet with decreased serum concentrations of leptin, triiodothyronine (T3), testosterone (P < 0.001), and estradiol (P < 0.01) coinciding with an increased incidence of menstrual irregularities (P < 0.05). Body weight and all hormones except T3 and testosterone returned to baseline during a 3–4 month recovery period including increased energy intake and decreased levels aerobic exercise. This study shows for the first time that most of the hormonal changes after a 35–50% decrease in body fat in previously normal-weight females can recover within 3–4 months of increased energy intake.
Aims/hypothesis Better understanding of type 2 diabetes and its prevention is a pressing need. Changes in human plasma Nglycome are associated with many diseases and represent promising diagnostic and prognostic biomarkers. Variations in glucose metabolism directly affect glycosylation through the hexosamine pathway but studies of plasma glycome in type 2 diabetes are scarce. The aim of this study was to determine whether plasma protein N-glycome is changed in individuals who are at greater risk of developing type 2 diabetes. Methods Using a chromatographic approach, we analysed Nlinked glycans from plasma proteins in two populations comprising individuals with registered hyperglycaemia during critical illness (increased risk for development of type 2 diabetes) and individuals who stayed normoglycaemic during the same condition: AcuteInflammation (59 cases (ORCADES and SABRE populations) all presented with increased branching, galactosylation and sialylation of plasma protein N-glycans and these changes were of similar magnitude. Conclusions/interpretation Increased complexity of plasma N-glycan structures is associated with higher risk of developing type 2 diabetes and poorer regulation of blood glucose levels. Although further research is needed, this finding could offer a potential new approach for improvement in prevention of diabetes and its complications.
Purpose: Alternative glycosylation has significant structural and functional consequences on IgG and consequently also on cancer immunosurveillance. Because of technological limitations, the effects of highly heritable individual variations and the differences in the dynamics of changes in IgG glycosylation on colorectal cancer were never investigated before.Experimental Design: Using recently developed highthroughput UPLC technology for IgG glycosylation analysis, we analyzed IgG glycome composition in 760 patients with colorectal cancer and 538 matching controls. Effects of surgery were evaluated in 28 patients sampled before and three times after surgery. A predictive model was built using regularized logistic regression and evaluated using a 10-cross validation procedure. Furthermore, IgG glycome composition was analyzed in 39 plasma samples collected before initial diagnosis of colorectal cancer. Results:We have found that colorectal cancer associates with decrease in IgG galactosylation, IgG sialylation and increase in core-fucosylation of neutral glycans with concurrent decrease of core-fucosylation of sialylated glycans. Although a model based on age and sex did not show discriminative power (AUC ¼ 0.499), the addition of glycan variables into the model considerably increased the discriminative power of the model (AUC ¼ 0.755). However, none of these differences were significant in the small set of samples collected before the initial diagnosis.Conclusions: Considering the functional relevance of IgG glycosylation for both tumor immunosurveillance and clinical efficacy of therapy with mAbs, individual variation in IgG glycosylation may turn out to be important for prediction of disease course or the choice of therapy, thus warranting further, more detailed studies of IgG glycosylation in colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.