The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF) multilayer film can not only act as an antithrombotic coating reagent, but also induce proliferation of endothelial progenitor cells (EPCs) on the decellularized aortic heart valve. SEM demonstrated the adhesion and geometric deformation of platelets. The quantitative assay of platelet activation was determined by measuring the production of soluble P-selectin. Binding and subsequent release of heparin and VEGF from valve leaflets were assessed qualitatively by laser confocal scanning microscopy and quantitatively by ELISA methods. Human blood derived EPCs were cultured and the adhesion and growth of EPCs on the surface modified valvular scaffolds were assessed. The results showed that Heparin-VEGF multilayer film improved decellularized valve haemocompatibility with respect to a substantial reduction of platelet adhesion. Release of VEGF from the decellularized heart valve leaflets at physiological conditions was sustained over 5 days. In vitro biological tests demonstrated that EPCs achieved better adhesion, proliferation and migration on the coatings with Heparin-VEGF multilayer film. Combined, these results indicate that Heparin-VEGF multilayer film could be used to cover the decellularized porcine aortic valve to decrease platelet adhesion while exhibiting excellent EPCs biocompatibility.
BackgroundMicroRNAs (miRNAs) regulate a lot of physiological and pathological processes, including myocardial ischemia/reperfusion. Recent studies reported that knockdown of miR-92a could attenuate ischemia/reperfusion-induced myocardial injury. In the present study, we examined the potential anti-apoptotic effects of miR-92a in a rat myocardiocyte cell line, and the possible role of Smad7 in such actions.Methodology and ResultsIn a preliminary bioinformatic analysis, we identified SMAD family member 7 (Smad7) as a potential target for miR-92a. A luciferase reporter assay indeed demonstrated that miR-92a could inhibit Smad7 expression. Myocardial ischemia/reperfusion was simulated in rat H9c2 cells with 24-h hypoxia followed by 12-h reoxygenation. Prior to hypoxia/reoxygenation, cells were transfected by miR-92a inhibitor. In some experiments, cells were co-transfected with siRNA-Smad7. The miR-92a inhibitor dramatically reduced the release of lactate dehydrogenase and malonaldehyde, and attenuated cardiomyocyte apoptosis. The miR-92a inhibitor increased SMAD7 protein level and decreased nuclear NF-κB p65 protein. Effects of the miR-92a inhibitor were attenuated by co-transfection with siRNA-Smad7.ConclusionInhibiting miR-92a can attenuate myocardiocyte apoptosis induced by hypoxia/reoxygenation by targeting Smad7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.