The plasma activity level of the recently discovered fast-acting inhibitor of tissue-type plasminogen activator (t-PA) was found to be temporarily increased after surgery, myocardial infarction and severe trauma. Detailed analysis of the postoperative period revealed simultaneously increased t-PA antigen and inhibition and decreased t-PA activity only on the first postoperative day. These changes were more rapid than those in fibrinogen and C-reactive protein. It is concluded that t-PA inhibition shows the most rapidly changing pattern observed so far in response to trauma. The postoperative fibrinolytic shutdown in blood fibrinolytic activity can be ascribed to a primary increase in t-PA inhibitor levels.
Many preclinical studies in critical care medicine and related disciplines rely on hypothesis-driven research in mice. The underlying premise posits that mice sufficiently emulate numerous pathophysiological alterations produced by trauma/sepsis and can serve as an experimental platform for answering clinically relevant questions. Recently the lay press severely criticized the translational relevance of mouse models in critical care medicine. A series of provocative editorials were elicited by a highly-publicized research report in the Proceedings of the National Academy of Sciences (PNAS; February 2013), which identified an unrecognized gene expression profile mismatch between human and murine leukocytes following burn/trauma/endotoxemia. Based on their data, the authors concluded that mouse models of trauma/inflammation are unsuitable for studying corresponding human conditions. We believe this conclusion was not justified. In conjunction with resulting negative commentary in the popular press, it can seriously jeopardize future basic research in critical care medicine. We will address some limitations of that PNAS report to provide a framework for discussing its conclusions and attempt to present a balanced summary of strengths/weaknesses of use of mouse models. While many investigators agree that animal research is a central component for improved patient outcomes, it is important to acknowledge known limitations in clinical translation from mouse to man. The scientific community is responsible to discuss valid limitations without over-interpretation. Hopefully a balanced view of the strengths/weaknesses of using animals for trauma/endotoxemia/critical care research will not result in hasty discount of the clear need for using animals to advance treatment of critically ill patients.
In sepsis and multiple organ dysfunction syndrome (MODS) caused by gram-negative bacteria, lipopolysaccharide (LPS) initiates the early signaling events leading to the deleterious inflammatory response. However, it has become clear that LPS can not reproduce all of the clinical features of sepsis, which emphasize the roles of other contributing factors. Gram-positive bacteria, which lack LPS, are today responsible for a substantial part of the incidents of sepsis with MODS. The major wall components of gram-positive bacteria, peptidoglycan and lipoteichoic acid, are thought to contribute to the development of sepsis and MODS. In this review, the literature underlying our current understanding of how peptidoglycan and lipoteichoic acid activate inflammatory responses will be presented, with a focus on recent advances in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.