The molecular weights (MWs) of hyaluronic acid (HA) in extracellular matrix secreted from both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) play crucial roles in the cardiovascular physiology, as HA with appropriate MW influences important pathways of cardiovascular homeostasis, inhibits VSMC synthetic phenotype change and proliferation, inhibits platelet activation and aggregation, promotes endothelial monolayer repair and functionalization, and prevents inflammation and atherosclerosis. In this study, HA samples with gradients of MW (4 × 10, 1 × 10, and 5 × 10 Da) were prepared by covalent conjugation to a copolymerized film of polydopamine and hexamethylendiamine (PDA/HD) as multifunctional coatings (PDA/HD-HA) with potential to improve the biocompatibility of cardiovascular biomaterials. The coatings immobilized with high-MW-HA (PDA/HD-HA-2: 1 × 10 Da; PDA/HD-HA-3: 5 × 10 Da) exhibited a remarkable suppression of platelet activation/aggregation and thrombosis under 15 dyn/cm blood flow and simultaneously suppressed the adhesion and proliferation of VSMC and the adhesion, activation, and inflammatory cytokine release of macrophages. In particular, PDA/HD-HA-2 significantly enhanced VEC adhesion, proliferation, migration, and functional factors release, as well as the captured number of endothelial progenitor cells under dynamic condition. The in vivo results indicated that the multifunctional surface (PDA/HD-HA-2) created a favorable microenvironment of endothelial monolayer formation and functionalization for promoting reendothelialization and reducing restenosis of cardiovascular biomaterials.
Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH)2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.