A DNA sequencing system based on the use of a novel set of four chain-terminating dideoxynucleotides, each carrying a different chemically tuned succinylfluorescein dye distinguished by its fluorescent emission is described. Avian myeloblastosis virus reverse transcriptase is used in a modified dideoxy DNA sequencing protocol to produce a complete set of fluorescence-tagged fragments in one reaction mixture. These DNA fragments are resolved by polyacrylamide gel electrophoresis in one sequencing lane and are identified by a fluorescence detection system specifically matched to the emission characteristics of this dye set. A scanning system allows multiple samples to be run simultaneously and computer-based automatic base sequence identifications to be made. The sequence analysis of M13 phage DNA made with this system is described.
The discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials. The structure-activity relationships (SARs) developed with respect to CV effects established that small structural changes to the P2* subsite of the molecule had a significant impact on the CV profile of a given compound. The antiviral activity, preclincial PK profile, and toxicology studies in rat and dog supported clinical development of BMS-650032 (24).
The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.
Screening of our chemical library using a rat corticotropin-releasing hormone (CRH) receptor assay led to the discovery that 2-anilinopyrimidine 15-1 weakly displaced [125I]-0-Tyr-oCRH from rat frontal cortex homogenates when compared to the known peptide antagonist alpha-helical CRH(9-41) (Ki = 5700 nM vs 1 nM). Furthermore, 15-1 weakly inhibited CRH-stimulated adenylate cyclase activity in the same tissue, but it was less potent than alpha-helical CRH(9-41) (IC50 = 20 000 nM vs 250 nM). Systematic structure-activity relationship studies, using the cloned human CRH1 receptor assay, defined the pharmacophore for optimal binding to hCRH1 receptors. Several high-affinity 2-anilinopyrimidines and -triazines were discovered, some of which had superior pharmacokinetic profiles in the rat. This paper describes the structure-activity studies which improved hCRH1 receptor binding affinity and pharmacokinetic parameters in the rat. Compound 28-17 (mean hCRH1 Ki = 32 nM) had a significantly improved pharmacokinetic profile in the rat (19% oral bioavailability at 30 mg/kg) as well as in the dog (20% oral bioavailability at 5 mg/kg) relative to the early lead structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.