Lyn-deficient mice were generated to analyze the role of Lyn in B cell antigen receptor (BCR) signaling. These mice had a reduced number of peripheral B cells with a greater proportion of immature cells and a higher than normal turnover rate. Aged lyn-/- mice developed splenomegaly, produced autoantibodies, and had an expanded population of B lymphoblasts of the B1 lineage. Splenic B cells from young lyn-/- mice initiated early BCR signaling events, although in a delayed fashion. Unexpectedly, lyn-/- B cells exhibited an enhanced MAP kinase activation and an increased proliferative response to BCR engagement. Stimulation of lyn-/- B cells with intact and F(ab')2 anti-IgM revealed defects in at least two mechanisms that negatively regulate BCR signaling, one of which involves Fc gammaRIIb1.
Receptors on macrophages for the Fc region of IgG (FcγR) mediate a number of responses important for host immunity. Signaling events necessary for these responses are likely initiated by the activation of Src-family and Syk-family tyrosine kinases after FcγR cross-linking. Macrophages derived from Syk-deficient (Syk−) mice were defective in phagocytosis of particles bound by FcγRs, as well as in many FcγR-induced signaling events, including tyrosine phosphorylation of a number of cellular substrates and activation of MAP kinases. In contrast, Syk− macrophages exhibited normal responses to another potent macrophage stimulus, lipopolysaccharide. Phagocytosis of latex beads and Escherichia coli bacteria was also not affected. Syk− macrophages exhibited formation of polymerized actin structures opposing particles bound to the cells by FcγRs (actin cups), but failed to proceed to internalization. Interestingly, inhibitors of phosphatidylinositol 3-kinase also blocked FcγR-mediated phagocytosis at this stage. Thus, PI 3-kinase may participate in a Syk-dependent signaling pathway critical for FcγR-mediated phagocytosis. Macrophages derived from mice deficient for the three members of the Src-family of kinases expressed in these cells, Hck, Fgr, and Lyn, exhibited poor Syk activation upon FcγR engagement, accompanied by a delay in FcγR-mediated phagocytosis. These observations demonstrate that Syk is critical for FcγR-mediated phagocytosis, as well as for signal transduction in macrophages. Additionally, our findings provide evidence to support a model of sequential tyrosine kinase activation by FcγR's analogous to models of signaling by the B and T cell antigen receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.