Recent research suggests an involvement of hippocampal neurogenesis in behavioral effects of antidepressants. However, the precise mechanisms through which newborn granule neurons might influence the antidepressant response remain elusive. Here, we demonstrate that unpredictable chronic mild stress in mice not only reduces hippocampal neurogenesis, but also dampens the relationship between hippocampus and the main stress hormone system, the hypothalamo-pituitary-adrenal (HPA) axis. Moreover, this relationship is restored by treatment with the antidepressant fluoxetine, in a neurogenesis-dependent manner. Specifically, chronic stress severely impairs HPA axis activity, the ability of hippocampus to modulate downstream brain areas involved in the stress response, the sensitivity of the hippocampal granule cell network to novelty/glucocorticoid effects and the hippocampus-dependent negative feedback of the HPA axis. Remarkably, we revealed that, although ablation of hippocampal neurogenesis alone does not impair HPA axis activity, the ability of fluoxetine to restore hippocampal regulation of the HPA axis under chronic stress conditions, occurs only in the presence of an intact neurogenic niche. These findings provide a mechanistic framework for understanding how adult-generated new neurons influence the response to antidepressants. We suggest that newly generated neurons may facilitate stress integration and that, during chronic stress or depression, enhancing neurogenesis enables a dysfunctional hippocampus to restore the central control on stress response systems, then allowing recovery.
BackgroundFragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes.Methods and resultsWe used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 μM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice.ConclusionThese results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.