We present a large class of models of D-branes at (orientifold) Calabi-Yau singularities which enjoy dynamical supersymmetry breaking at low energy, by means of either the SU (5) or 3-2 supersymmetry breaking models. Once embedded in a warped throat or, equivalently, in a large N theory, all models display an instability along a Coulomb branch direction towards supersymmetry preserving vacua. Interestingly, the nature of the runaway mechanism is model-independent and has a precise geometrical interpretation. This naturally suggests the properties a Calabi-Yau singularity should have in order for such instability not to occur. arXiv:1909.04682v1 [hep-th]
We study 4d$$ \mathcal{N} $$
N
= 1 gauge theories engineered via D-branes at orientifolds of toric singularities, where gauge anomalies are cancelled without the introduction of non-compact flavor branes. Using dimer model techniques, we derive geometric criteria for establishing whether a given singularity can admit anomaly-free D-brane configurations purely based on its toric data and the type of orientifold projection. Our results therefore extend the dictionary between geometric properties of singularities and physical properties of the corresponding gauge theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.