The olivine-type compounds LiMPO4 (M = Mn, Fe, Co, Ni) consist of MO4 layers made up of corner-sharing MO6 octahedra of high-spin M2+ ions. To gain insight into the magnetic properties of these phosphates, their spin exchange interactions were estimated by spin dimer analysis using tight binding calculations and by electronic band structure analysis using first principles density functional theory calculations. Three spin exchange interactions were found to be important for LiMPO4, namely, the intralayer superexchange J1, the intralayer super-superexchange Jb along the b-direction, and the interlayer super-superexchange J2 along the b-direction. The magnetic ground state of LiMPO4 was determined in terms of these spin exchange interactions by calculating the total spin exchange interaction energy under the classical spin approximation. In the spin lattice of LiMPO4, the two-dimensional antiferromagnetic planes defined by the spin exchange J1 are antiferromagnetically coupled by the spin exchange J2, in agreement with available experimental data.
International audienceThe anisotropy of the oxygen anionic conductivity was measured for two mixed ionic electronic conducting (MIEC) oxides with the 2D K2NiF4-type structure, i.e., Nd2NiO4+δ and Pr2NiO4+δ, using high quality single crystals. Measurements of the oxygen diffusivity and surface exchange performed parallel and perpendicularly to the [001] direction, from 450 to 700 °C, using the isotope exchange depth profile (IEDP) technique, combining 16O/18O exchange and secondary ion mass spectroscopy (SIMS) are reported. For both materials the diffusion is about 3 orders of magnitude higher along the (a,b)-plane compared to the perpendicular (c-axis) direction. These values are among the highest when compared to several state-of-the-art MIEC materials. The diffusion along the (a,b)-plane for Pr2NiO4+δ is higher than that of Nd2NiO4+δ due to a much lower diffusion activation energy (0.5 and 1.4 eV for Pr2NiO4+δ and Nd2NiO4+δ, respectively). A large anisotropy is also observed in the surface exchange coefficient (k*) values for both materials, with (a,b)-plane coefficients being 1 to 1.5 orders of magnitude larger than those for the c-axis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.