T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.
After activation, CD4+ helper T (T(H)) cells differentiate into distinct effector subsets that are characterized by their unique cytokine expression and immunoregulatory function. During this differentiation, T(H)1 and T(H)2 cells produce interferon-gamma and interleukin (IL)-4, respectively, as autocrine factors necessary for selective lineage commitment. A distinct T(H) subset, termed T(HIL-17), T(H)17 or inflammatory T(H) (T(H)i), has been recently identified as a distinct T(H) lineage mediating tissue inflammation. T(H)17 differentiation is initiated by transforming growth factor-beta and IL-6 (refs 5-7) and reinforced by IL-23 (ref. 8), in which signal transduction and activators of transcription (STAT)3 and retinoic acid receptor-related orphan receptor (ROR)-gamma mediate the lineage specification. T(H)17 cells produce IL-17, IL-17F and IL-22, all of which regulate inflammatory responses by tissue cells but have no importance in T(H)17 differentiation. Here we show that IL-21 is another cytokine highly expressed by mouse T(H)17 cells. IL-21 is induced by IL-6 in activated T cells, a process that is dependent on STAT3 but not ROR-gamma. IL-21 potently induces T(H)17 differentiation and suppresses Foxp3 expression, which requires STAT3 and ROR-gamma, which is encoded by Rorc. IL-21 deficiency impairs the generation of T(H)17 cells and results in protection against experimental autoimmune encephalomyelitis. IL-21 is therefore an autocrine cytokine that is sufficient and necessary for T(H)17 differentiation, and serves as a target for treating inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.