Background: Health-related quality of life (HRQoL) impairment is often reported among COVID-19 ICU survivors, and little is known about their long-term outcomes. We evaluated the HRQoL trajectories between 3 months and 1 year after ICU discharge, the factors influencing these trajectories and the presence of clusters of HRQoL profiles in a population of COVID-19 patients who underwent invasive mechanical ventilation (IMV). Moreover, pathophysiological correlations of residual dyspnea were tested. Methods: We followed up 178 survivors from 16 Italian ICUs up to one year after ICU discharge. HRQoL was investigated through the 15D instrument. Available pulmonary function tests (PFTs) and chest CT scans at 1 year were also collected. A linear mixed-effects model was adopted to identify factors associated with different HRQoL trajectories and a two-step cluster analysis was performed to identify HRQoL clusters. Results: We found that HRQoL increased during the study period, especially for the significant increase of the physical dimensions, while the mental dimensions and dyspnea remained substantially unchanged. Four main 15D profiles were identified: full recovery (47.2%), bad recovery (5.1%) and two partial recovery clusters with mostly physical (9.6%) or mental (38.2%) dimensions affected. Gender, duration of IMV and number of comorbidities significantly influenced HRQoL trajectories. Persistent dyspnea was reported in 58.4% of patients, and weakly, but significantly, correlated with both DLCO and length of IMV. Conclusions: HRQoL impairment is frequent 1 year after ICU discharge, and the lowest recovery is found in the mental dimensions. Persistent dyspnea is often reported and weakly correlated with PFTs alterations. Trial registration: NCT04411459. 15D score 3 months -mean ± SD 0.857 ± 0.133 0.927 ± 0.061 0.800 ± 0.135 0.853 ± 0.114 0.637 ± 0.204 < 0.001 15D score 1 year -mean ± SD 0.880 ± 0.115 0.964 ± 0.033 0.820 ± 0.068 0.866 ± 0.088 0.572 ± 0.112 < 0.001 Mobility -mean ± SD 0.876 ± 0.207 0.963 ± 0.104 0.828 ± 0.191 0.901 ± 0.166 0.375 ± 0.298 < 0.001 Vision -mean ± SD 0.953 ± 0.119 0.992 ± 0.040 0.942 ± 0.108 0.949 ± 0.094 0.681 ± 0.280 < 0.001 Hearing -mean ± SD 0.968 ± 0.098 1.000 ± 0.000 1.000 ± 0.000 0.745 ± 0.135 0.857 ± 0.192 < 0.001 Breathing -mean ± SD 0.746 ± 0.238 0.879 ± 0.154 0.620 ± 0.227 0.753 ± 0.223 0.438 ± 0.238 < 0.001 Sleeping -mean ± SD 0.838 ± 0.238 0.940 ± 0.135 0.716 ± 0.274 0.929 ± 0.142 0.632 ± 0.312 < 0.001 Eating -mean ± SD 0.979 ± 0.102 1.000 ± 0.000 1 .000 ± 0.000 1.000 ± 0.000 0.587 ± 0.221 < 0.001 Speech -mean ± SD 0.980 ± 0.090 0.996 ± 0.032 0.996 ± 0.036 0.948 ± 0.117 0.777 ± 0.276 < 0.001 Excretion -mean ± SD 0.974 ± 0.110 1.000 ± 0.000 1.000 ± 0.000 0.872 ± 0.191 0.720 ± 0.292
Background A large proportion of patients with coronavirus disease 2019 (COVID-19) develop severe respiratory failure requiring admission to the intensive care unit (ICU) and about 80% of them need mechanical ventilation (MV). These patients show great complexity due to multiple organ involvement and a dynamic evolution over time; moreover, few information is available about the risk factors that may contribute to increase the time course of mechanical ventilation. The primary objective of this study is to investigate the risk factors associated with the inability to liberate COVID-19 patients from mechanical ventilation. Due to the complex evolution of the disease, we analyzed both pulmonary variables and occurrence of non-pulmonary complications during mechanical ventilation. The secondary objective of this study was the evaluation of risk factors for ICU mortality. Methods This multicenter prospective observational study enrolled 391 patients from fifteen COVID-19 dedicated Italian ICUs which underwent invasive mechanical ventilation for COVID-19 pneumonia. Clinical and laboratory data, ventilator parameters, occurrence of organ dysfunction, and outcome were recorded. The primary outcome measure was 28 days ventilator-free days and the liberation from MV at 28 days was studied by performing a competing risks regression model on data, according to the method of Fine and Gray; the event death was considered as a competing risk. Results Liberation from mechanical ventilation was achieved in 53.2% of the patients (208/391). Competing risks analysis, considering death as a competing event, demonstrated a decreased sub-hazard ratio for liberation from mechanical ventilation (MV) with increasing age and SOFA score at ICU admission, low values of PaO2/FiO2 ratio during the first 5 days of MV, respiratory system compliance (CRS) lower than 40 mL/cmH2O during the first 5 days of MV, need for renal replacement therapy (RRT), late-onset ventilator-associated pneumonia (VAP), and cardiovascular complications. ICU mortality during the observation period was 36.1% (141/391). Similar results were obtained by the multivariate logistic regression analysis using mortality as a dependent variable. Conclusions Age, SOFA score at ICU admission, CRS, PaO2/FiO2, renal and cardiovascular complications, and late-onset VAP were all independent risk factors for prolonged mechanical ventilation in patients with COVID-19. Trial registration NCT04411459
Background Noninvasive respiratory support (NIRS) has been diffusely employed outside the intensive care unit (ICU) to face the high request of ventilatory support due to the massive influx of patients with acute respiratory failure (ARF) caused by coronavirus-19 disease (COVID-19). We sought to summarize the evidence on clinically relevant outcomes in COVID-19 patients supported by NIV outside the ICU. Methods We searched PUBMED®, EMBASE®, and the Cochrane Controlled Clinical trials register, along with medRxiv and bioRxiv repositories for pre-prints, for observational studies and randomized controlled trials, from inception to the end of February 2021. Two authors independently selected the investigations according to the following criteria: (1) observational study or randomized clinical trials enrolling ≥ 50 hospitalized patients undergoing NIRS outside the ICU, (2) laboratory-confirmed COVID-19, and (3) at least the intra-hospital mortality reported. Preferred Reporting Items for Systematic reviews and Meta-analysis guidelines were followed. Data extraction was independently performed by two authors to assess: investigation features, demographics and clinical characteristics, treatments employed, NIRS regulations, and clinical outcomes. Methodological index for nonrandomized studies tool was applied to determine the quality of the enrolled studies. The primary outcome was to assess the overall intra-hospital mortality of patients under NIRS outside the ICU. The secondary outcomes included the proportions intra-hospital mortalities of patients who underwent invasive mechanical ventilation following NIRS failure and of those with ‘do-not-intubate’ (DNI) orders. Results Seventeen investigations (14 peer-reviewed and 3 pre-prints) were included with a low risk of bias and a high heterogeneity, for a total of 3377 patients. The overall intra-hospital mortality of patients receiving NIRS outside the ICU was 36% [30–41%]. 26% [21–30%] of the patients failed NIRS and required intubation, with an intra-hospital mortality rising to 45% [36–54%]. 23% [15–32%] of the patients received DNI orders with an intra-hospital mortality of 72% [65–78%]. Oxygenation on admission was the main source of between-study heterogeneity. Conclusions During COVID-19 outbreak, delivering NIRS outside the ICU revealed as a feasible strategy to cope with the massive demand of ventilatory assistance. Registration PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42020224788, December 11, 2020.
Objectives To assess the efficacy of corticosteroids in patients with coronavirus disease 2019 (COVID-19) Methods Multicenter observational study from February 22 through June 30, 2020. We included consecutive adult patients with severe COVID-19 defined as respiratory rate ≥30 breath per minute, oxygen saturation ≤93% on ambient air or arterial partial pressure of oxygen to fraction of inspired oxygen ≤300 mmHg. We excluded patients treated with other immunomodulant drugs, receiving low dose of corticosteroids and those receiving corticosteroids after 72h from admission. The primary endpoint was 30-day mortality form hospital admission. The main exposure variable was corticosteroid therapy at dosage of ≥0.5 mg/kg of prednisone equivalents. It was introduced as binomial covariate in a logistic regression model for primary endpoint and inverse probability of treatment weighting using the propensity score. Results Of 1717 patients with COVID-19 evaluated, 513 patients were included in the study; of these 170 (33%) were treated with corticosteroids. During the hospitalization 166 (34%) patients reached the primary outcome [60/170 (35%) in the corticosteroid group and 106/343 (31%) in the non-corticosteroid group]. At multivariable analysis corticosteroid treatment was not associated with lower 30-day mortality rate [aOR 0.59 (0.20-1.74), p=0.33]. After inverse probability of treatment weighting, corticosteroids were not associated to lower 30-day mortality [average treatment effect 0.05 (95% -0.02 to 0.09), p=0.12]. However, subgroup analysis revealed that in patients with PO 2 /FiO 2 < 200 mmHg at admission [135 patients, 52 (38%) treated with corticosteroids] corticosteroid treatment was associated to a lower risk of 30-day mortality [23/52 (44%) vs 45/83 (54%), aOR 0.20 (95%CI 0.04 to 0.90), p=0.036]. Conclusion Our study shows that the effect of corticosteroid treatment on mortality might be limited to critically ill COVID-19 patients.
Background Prone positioning (PP) has been used to improve oxygenation in patients affected by the SARS-CoV-2 disease (COVID-19). Several mechanisms, including lung recruitment and better lung ventilation/perfusion matching, make a relevant rational for using PP. However, not all patients maintain the oxygenation improvement after returning to supine position. Nevertheless, no evidence exists that a sustained oxygenation response after PP is associated to outcome in mechanically ventilated COVID-19 patients. We analyzed data from 191 patients affected by COVID-19-related acute respiratory distress syndrome undergoing PP for clinical reasons. Clinical history, severity scores and respiratory mechanics were analyzed. Patients were classified as responders (≥ median PaO2/FiO2 variation) or non-responders (< median PaO2/FiO2 variation) based on the PaO2/FiO2 percentage change between pre-proning and 1 to 3 h after re-supination in the first prone positioning session. Differences among the groups in physiological variables, complication rates and outcome were evaluated. A competing risk regression analysis was conducted to evaluate if PaO2/FiO2 response after the first pronation cycle was associated to liberation from mechanical ventilation. Results The median PaO2/FiO2 variation after the first PP cycle was 49 [19–100%] and no differences were found in demographics, comorbidities, ventilatory treatment and PaO2/FiO2 before PP between responders (96/191) and non-responders (95/191). Despite no differences in ICU length of stay, non-responders had a higher rate of tracheostomy (70.5% vs 47.9, P = 0.008) and mortality (53.7% vs 33.3%, P = 0.006), as compared to responders. Moreover, oxygenation response after the first PP was independently associated to liberation from mechanical ventilation at 28 days and was increasingly higher being higher the oxygenation response to PP. Conclusions Sustained oxygenation improvement after first PP session is independently associated to improved survival and reduced duration of mechanical ventilation in critically ill COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.