Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.DOI: http://dx.doi.org/10.7554/eLife.19850.001
An expert working group on the in vivo micronucleus assay, formed as part of the International Workshop on Genotoxicity Test Procedures (IWGTP), discussed protocols for the conduct of established and proposed micronucleus assays at a meeting held March 25–26, 1999 in Washington, DC, in conjunction with the annual meeting of the Environmental Mutagen Society. The working group reached consensus on a number issues, including: (1) protocols using repeated dosing in mice and rats; (2) integration of the (rodent erythrocyte) micronucleus assay into general toxicology studies; (3) the possible omission of concurrently‐treated positive control animals from the assay; (4) automation of micronucleus scoring by flow cytometry or image analysis; (5) criteria for regulatory acceptance; (6) detection of aneuploidy induction in the micronucleus assay; and (7) micronucleus assays in tissues (germ cells, other organs, neonatal tissue) other than bone marrow. This report summarizes the discussions and recommendations of this working group. In the classic rodent erythrocyte assay, treatment schedules using repeated dosing of mice or rats, and integration of assays using such schedules into short‐term toxicology studies, were considered acceptable as long as certain study criteria were met. When the micronucleus assay is integrated into ongoing toxicology studies, relatively short‐term repeated‐dose studies should be used preferentially because there is not yet sufficient data to demonstrate that conservative dose selection in longer term studies (longer than 1 month) does not reduce the sensitivity of the assay. Additional validation data are needed to resolve this point. In studies with mice, either bone marrow or blood was considered acceptable as the tissue for assessing micronucleus induction, provided that the absence of spleen function has been verified in the animal strains used. In studies with rats, the principal endpoint should be the frequency of micronucleated immature erythrocytes in bone marrow, although scoring of peripheral blood samples gives important supplementary data about the time course of micronucleus induction. When dose concentration and stability are verified appropriately, concurrent treatment with a positive control agent is not necessary. Control of staining and scoring procedures can be obtained by including appropriate reference samples that have been obtained from a separate experiment. For studies in rats or mice, treatment/sampling regimens should include treatment at intervals of no more than 24 hr (unless the test article has a half‐life of more than 24 hr) with sampling of bone marrow or blood, respectively, within 24 or 40 hr after the last treatment. The use of a DNA specific stain is recommended for the identification of micronuclei, especially for studies in the rat. In the case of a negative assay result with a non‐toxic test article, it is desirable that systemic exposure to the test article is demonstrated. The group concluded that successful application of automated scoring by...
Although glucocorticoids (GC) represent the most frequently used immunosuppressive drugs, their effects are still not well understood. In our previous studies, we have shown that treatment of monocytes with GC does not cause a global suppression of monocytic effector functions, but rather induces differentiation of a specific anti-inflammatory phenotype. The anti-inflammatory role of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively studied during recent years. However, a relationship between GC treatment and PPAR-γ expression in macrophages has not been investigated so far. Studies using PPAR-γ-deficient mice have frequently provided controversial results. A potential reason is the use of primary cells, which commonly represent inhomogeneous populations burdened with side effects and influenced by bystander cells. To overcome this constraint, we established ER-Hoxb8-immortalized bone marrow-derived macrophages from Ppargfl/fl and LysM-Cre Ppargfl/fl mice in this study. In contrast to primary macrophages, the ER-Hoxb8 system allows the generation of a homogeneous and well-defined population of resting macrophages. We could show that the loss of PPAR-γ resulted in delayed kinetic of differentiation of monocytes into macrophages as assessed by reduced F4/80, but increased Ly6C expression in early phases of differentiation. As expected, PPAR-γ-deficient macrophages displayed an increased pro-inflammatory phenotype upon long-term LPS stimulation characterized by an elevated production of pro-inflammatory cytokines TNF-α, IL1-β, IL-6, IL-12 and a reduced production of anti-inflammatory cytokine IL-10 compared to PPAR-γ WT cells. Moreover, PPAR-γ-deficient macrophages showed impaired phagocytosis. GC treatment of macrophages led to the upregulation of PPAR-γ expression. However, there were no differences in GC-induced suppression of cytokines between both cell types, implicating a PPAR-γ-independent mechanism. Intriguingly, GC treatment resulted in an increased in vitro migration only in PPAR-γ-deficient macrophages. Performing a newly developed in vivo cell-tracking experiment, we could confirm that GC induces an increased recruitment of PPAR-γ KO, but not PPAR-γ WT macrophages to the site of inflammation. Our findings suggest a specific effect of PPAR-γ on GC-induced migration in macrophages. In conclusion, we could demonstrate that PPAR-γ exerts anti-inflammatory activities and shapes macrophage functions. Moreover, we identified a molecular link between GC and PPAR-γ and could show for the first time that PPAR-γ modulates GC-induced migration in macrophages.
The replication dynamics at common fragile site FRA6E has been evaluated by molecular combing and interphase fluorescent in situ hybridisation (FISH) in primary human lymphocytes cultured under normal or aphidicolin-induced stress conditions. FRA6E is one of the most frequently expressed common fragile sites of the human genome. It harbours several genes, PARK2 being regarded as the most relevant one. According to the results obtained from interphase FISH analysis, FRA6E can be considered a mid-late-replicating sequence characterised by heterogeneous replication timing. Molecular combing did not reveal specific replication parameters at the fragile site: fork rates were highly comparable to those detected at an early replicating locus (LMNB2) used as control and in very good agreement with the whole-genome data obtained in parallel. The same indication applied to the density of initiation zones, the inter-origin distances from adjacent ongoing forks, the frequencies of unidirectional forks, fork arrest events and asynchronous forks. Interestingly, PARK2 appeared embedded in an early/late replication transition zone, corresponding to intron 8 (162 kb) and to the fragility core of FRA6E. In cells exposed to aphidicolin, few forks progressing at a rather slow rate were observed, the majority of them being unidirectional, but again a specific response of the fragile site was not observed. In summary, at FRA6E the replication process is not impaired per se, but chromosome breakages occur preferentially at an early/late replication transition zone. Aphidicolin might increase the occurrence of breakage events at FRA6E by prolonging the time interval separating the replication of early and late replication domains. These results may be of general significance to address the problem of fragile site instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.