One of the obstacles to AIDS vaccine development is the variability of HIV-1 within individuals and within infected populations, enabling viral escape from highly specific vaccine induced immune responses. An understanding of the different immune mechanisms capable of inhibiting HIV infection may be of benefit in the eventual design of vaccines effective against HIV-1 variants. To study this we first compared the immune responses induced in Rhesus monkeys by using two different immunization strategies based on the same vaccine strain of HIV-1. We then utilized a chimeric simian͞HIV that expressed the envelope of a dual tropic HIV-1 escape variant isolated from a later time point from the same patient from which the vaccine strain was isolated. Upon challenge, one vaccine group was completely protected from infection, whereas all of the other vaccinees and controls became infected. Protected macaques developed highest titers of heterologous neutralizing antibodies, and consistently elevated HIV-1-specific T helper responses. Furthermore, only protected animals had markedly increased concentrations of RANTES, macrophage inf lammatory proteins 1␣ and 1 produced by circulating CD8 ؉ T cells. These results suggest that vaccine strategies that induce multiple effector mechanisms in concert with -chemokines may be desired in the generation of protective immune responses by HIV-1 vaccines.
M. nemestrina immunized with an apathogenic HIV-2 molecular clone (HIV-2KR) were protected from CD4 decline and disease upon challenge with HIV-2(287), after any immunizing virus could be detected. Higher but not lower inocula of HIV-2KR were protective against intravenous inoculation of either 10(5) or 10(1) TCID50 of HIV-2(287). Protected animals displayed substantial reductions in PBMC proviral burden (1-3 logs), viral titers (1-2 logs), and plasma viral RNA (2-4 logs) compared to unprotected or naive animals as early as 1 week postinfection. Plasma viral RNA became undetectable after 24 weeks in protected animals, but remained high in unprotected animals. No viral RNA was present in the spleen of the protected animal necropsied more than a year after challenge (though viral DNA was still present). No neutralizing responses could be demonstrated, but CTL activity was detected sooner and at higher levels after challenge in protected than in unprotected macaques. In this novel HIV-2 vaccine model, protection was clearly dose-dependent, and clearance of challenge virus RNA from the plasma did not require detectable ongoing replication of the immunizing virus at the time of challenge.
FtsZ is a crucial prokaryotic protein involved in bacterial cell replication. It recently arose as a promising target in the search for antimicrobial agents able to fight antimicrobial resistance. In this work, going on with our structure‐activity relationship (SAR) study, we developed variously 7‐substituted 1,4‐benzodioxane compounds, linked to the 2,6‐difluorobenzamide by a methylenoxy bridge. Compounds exhibit promising antibacterial activities not only against multidrug‐resistant Staphylococcus aureus, but also on mutated Escherichia coli strains, thus enlarging their spectrum of action toward Gram‐negative bacteria as well. Computational studies elucidated, through a validated FtsZ binding protocol, the structural features of new promising derivatives as FtsZ inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.