The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic.
Background Little clinical research on new‐generation heat‐not‐burn cigarettes ( HNBC ) in comparison with electronic vaping cigarettes ( EVC ) and traditional tobacco combustion cigarettes ( TC ) has been reported. We aimed to appraise the acute effects of single use of HNBC , EVC, and TC in healthy smokers. Methods and Results This was an independent, cross‐over, randomized trial in 20 TC smokers, with allocation to different cycles of HNBC , EVC , and TC . All participants used all types of products, with an intercycle washout of 1 week. End points were oxidative stress, antioxidant reserve, platelet activation, flow‐mediated dilation, blood pressure, and satisfaction scores. Single use of any product led to an adverse impact on oxidative stress, antioxidant reserve, platelet function, flow‐mediated dilation, and blood pressure. HNBC had less impact than EVC and TC on soluble Nox2‐derived peptide (respectively, P =0.004 and 0.001), 8‐iso‐prostaglandin F2α‐ III ( P =0.004 and <0.001), and vitamin E ( P =0.018 and 0.044). HNBC and EVC were equally less impactful than TCs on flow‐mediated dilation ( P =0.872 for HNBC versus EVC ), H 2 O 2 ( P =0.522), H 2 O 2 breakdown activity ( P =0.091), soluble CD 40 ligand ( P =0.849), and soluble P‐selectin ( P =0.821). The effect of HNBC and, to a lesser extent EVC , on blood pressure was less evident than that of TC , whereas HNBC appeared more satisfying than EVC (all P <0.05). Conclusions Acute effects of HNBC , EVC, and TC are different on several oxidative stress, antioxidant reserve, platelet function, cardiovascular, and satisfaction dimensions, with TCs showing the most detrimental changes in clinically relevant features. Clinical Trial Registration URL : http://www.clinicaltrials.gov . Unique identifier: ...
Bicuspid aortic valve (BAV) is frequently associated with the development of ascending aortic aneurysm, even if the underlying mechanisms remain to be clarified. Here, we investigated if a deregulation of Notch1 signaling pathway and endothelial progenitor cells (EPCs) number is associated with BAV disease and an early ascending aortic aneurysm (AAA) onset. For this purpose, 70 subjects with BAV (M/F 50/20; mean age: 58.8 ± 14.8 years) and 70 subjects with tricuspid aortic valve (TAV) (M/F 35/35; mean age: 69.1 ± 12.8 years) and AAA complicated or not, were included. Interestingly, patients with AAA showed a significant increase in circulating Notch1 levels and EPC number than subjects without AAA. However, circulating Notch1 levels and EPC number were significantly lower in BAV subjects than TAV patients either in the presence or absence of AAA. Finally, Notch pathway was activated to a greater extent in aortic aneurysmatic portions with respect to healthy aortic fragments in both BAV and TAV patients. However, the expression of genes encoding components and ligands of Notch pathway in aortic tissues was significantly lower in BAV than TAV subjects. Our study demonstrates that BAV subjects are characterized by a significant decrease in both tissue and circulating levels of Notch pathway, and in blood EPC number than TAV patients, either in presence or absence of AAA disease.
Β-blockers (BB) are a primary treatment for chronic heart disease (CHD), resulting in prognostic and symptomatic benefits. Cardiac cell therapy represents a promising regenerative treatment and, for autologous cell therapy, the patients clinical history may correlate with the biology of resident progenitors and the quality of the final cell product. This study aimed at uncovering correlations between clinical records of biopsy-donor CHD patients undergoing cardiac surgery and the corresponding yield and phenotype of cardiospheres (CSs) and CS-derived cells (CDCs), which are a clinically relevant population for cell therapy, containing progenitors. We describe a statistically significant association between BB therapy and improved CSs yield and CDCs phenotype. We show that BB-CDCs have a reduced fibrotic-like CD90 + subpopulation, with reduced expression of collagen-I and increased expression of cardiac genes, compared to CDCs from non-BB donors. Moreover BB-CDCs had a distinctive microRNA expression profile, consistent with reduced fibrotic features (miR-21, miR-29a/b/c downregulation), and enhanced regenerative potential (miR-1, miR-133, miR-101 upregulation) compared to non-BB. In vitro adrenergic pharmacological treatments confirmed cytoprotective and anti-fibrotic effects of β1-blocker on CDCs. This study shows anti-fibrotic and pro-commitment effects of BB treatment on endogenous cardiac reparative cells, and suggests adjuvant roles of β-blockers in cell therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.