EFSA requested the Scientific Committee to develop a guidance document on the use of the weight of evidence approach in scientific assessments for use in all areas under EFSA's remit. The guidance document addresses the use of weight of evidence approaches in scientific assessments using both qualitative and quantitative approaches. Several case studies covering the various areas under EFSA's remit are annexed to the guidance document to illustrate the applicability of the proposed approach. Weight of evidence assessment is defined in this guidance as a process in which evidence is integrated to determine the relative support for possible answers to a question. This document considers the weight of evidence assessment as comprising three basic steps: (1) assembling the evidence into lines of evidence of similar type, (2) weighing the evidence, (3) integrating the evidence. The present document identifies reliability, relevance and consistency as three basic considerations for weighing evidence.
This document provides supplementary guidance on specific topics for the allergenicity risk assessment of genetically modified plants. In particular, it supplements general recommendations outlined in previous EFSA GMO Panel guidelines and Implementing Regulation (EU) No 503/2013. The topics addressed are non-IgE-mediated adverse immune reactions to foods, in vitro protein digestibility tests and endogenous allergenicity. New scientific and regulatory developments regarding these three topics are described in this document. Considerations on the practical implementation of those developments in the risk assessment of genetically modified plants are discussed and recommended, where appropriate. (C) 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority
This statement supplements and updates the GMO Panel guidance document on allergenicity of genetically modified (GM) plants published in 2017. In that guidance document, the GMO Panel considered that additional investigations on in vitro protein digestibility were needed before providing any additional recommendations in the form of guidance to applicants. Thus, an interim phase was proposed to assess the utility of an enhanced in vitro digestion test, as compared to the classical pepsin resistance test. Historically, resistance to degradation by pepsin using the classical pepsin resistance test has been considered as additional information, in a weight‐of‐evidence approach, for the assessment of allergenicity and toxicity of newly expressed proteins in GM plants. However, more recent evidence does not support this test as a good predictor of allergenic potential for hazard. Furthermore, there is a need for more reliable systems to predict the fate of the proteins in the gastrointestinal tract and how they interact with the relevant human cells. Nevertheless, the classical pepsin resistance test can still provide some information on the physicochemical properties of novel proteins relating to their stability under acidic conditions. But other methods can be used to obtain data on protein's structural and/or functional integrity. It is acknowledged that the classical pepsin resistance test is embedded into international guidelines, e.g. Codex Alimentarius and Regulation (EU) No 503/2013. For future development, a deeper understanding of protein digestion in the gastrointestinal tract could enable the framing of more robust strategies for the safety assessment of proteins. Given the high complexity of the digestion and absorption process of dietary proteins, it is needed to clarify and identify the aspects that could be relevant to assess potential risks of allergenicity and toxicity of proteins. To this end, a series of research questions to be addressed are also formulated in this statement.
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from 'modern' biotechnology initially published in 2003. The core approach for the safety assessment is based on a 'weight-of-evidence' approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/ stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as 'what is the purpose of the allergenicity risk assessment?' or 'what level of confidence is necessary for the predictions?'.
Maize MON 87411 was developed to confer resistance to corn rootworms (Diabrotica spp.) by the expression of a modified version of the Bacillus thuringiensis cry3Bb1 gene and a DvSnf7 dsRNA expression cassette, and tolerance to glyphosate‐containing herbicides by the expression of a CP4 5‐enolpyruvylshikimate‐3‐phosphate synthase (cp4 epsps) gene. The molecular characterisation data and bioinformatics analyses did not identify issues requiring assessment for food and feed safety. No statistically significant differences in the agronomic and phenotypic characteristics tested between maize MON 87411 and its conventional counterpart were identified. The compositional analysis of maize MON 87411 did not identify differences that required further assessment except for palmitic acid levels in grains from not treated maize MON 87411. The GMO Panel did not identify safety concerns regarding the toxicity and allergenicity of the Cry3Bb1 and CP4 EPSPS proteins, as expressed in maize MON 87411 and found no evidence that the genetic modification might significantly change the overall allergenicity of maize MON 87411. The nutritional impact of maize MON 87411‐derived food and feed is expected to be the same as those derived from the conventional counterpart and non‐GM commercial reference varieties. The GMO Panel concludes that maize MON 87411, as described in this application, is nutritionally equivalent to and as safe as the conventional counterpart and the non‐GM maize reference varieties tested, and no post‐market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87411 grains into the environment, maize MON 87411 would not raise environmental safety concerns. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87411. The GMO Panel concludes that maize MON 87411, as described in this application, is as safe as its conventional counterpart and the tested non‐GM maize reference varieties with respect to potential effects on human and animal health and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.