Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.
Sites of transcription of polyadenylated and nonpolyadenylated RNAs for 10 human chromosomes were mapped at 5-base pair resolution in eight cell lines. Unannotated, nonpolyadenylated transcripts comprise the major proportion of the transcriptional output of the human genome. Of all transcribed sequences, 19.4, 43.7, and 36.9% were observed to be polyadenylated, nonpolyadenylated, and bimorphic, respectively. Half of all transcribed sequences are found only in the nucleus and for the most part are unannotated. Overall, the transcribed portions of the human genome are predominantly composed of interlaced networks of both poly A+ and poly A- annotated transcripts and unannotated transcripts of unknown function. This organization has important implications for interpreting genotype-phenotype associations, regulation of gene expression, and the definition of a gene.
Using high-density oligonucleotide arrays representing essentially all nonrepetitive sequences on human chromosomes 21 and 22, we map the binding sites in vivo for three DNA binding transcription factors, Sp1, cMyc, and p53, in an unbiased manner. This mapping reveals an unexpectedly large number of transcription factor binding site (TFBS) regions, with a minimal estimate of 12,000 for Sp1, 25,000 for cMyc, and 1600 for p53 when extrapolated to the full genome. Only 22% of these TFBS regions are located at the 5' termini of protein-coding genes while 36% lie within or immediately 3' to well-characterized genes and are significantly correlated with noncoding RNAs. A significant number of these noncoding RNAs are regulated in response to retinoic acid, and overlapping pairs of protein-coding and noncoding RNAs are often coregulated. Thus, the human genome contains roughly comparable numbers of protein-coding and noncoding genes that are bound by common transcription factors and regulated by common environmental signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.